如图,△ABC中,∠C=90°,∠ABC和∠EAC的平分线交于点D,∠ABD和∠BAD的平分线交于点F,则∠AFB的度数__
1个回答
展开全部
∠ABD和∠BAD的平分线交于点F,则∠AFB的度数_112.5°_。
∵∠EAC-∠ABC=90° 【=∠ACB】
∴(∠EAC)/2-(∠ABC)/2=90°/2=45°
又 ∠CAB=90°-∠ABC
∴ ∠AFB=∠EAF-∠ABF
=(∠EAD+∠DAF)-(∠ABC)/4
=[(∠EAC)/2+(∠DAC+∠CAB)/2]-(∠ABC)/4
={(∠EAC)/2+[(∠EAC)/2+(90°-∠ABC)]/2}-(∠ABC)/4
=∠EAC/2+∠EAC/4+45°-∠ABC/2-∠ABC/4
=45°+3(∠EAC-∠ABC)/4
=45°+(3/4)*90°
=45°+67.5°
=112.5°
∵∠EAC-∠ABC=90° 【=∠ACB】
∴(∠EAC)/2-(∠ABC)/2=90°/2=45°
又 ∠CAB=90°-∠ABC
∴ ∠AFB=∠EAF-∠ABF
=(∠EAD+∠DAF)-(∠ABC)/4
=[(∠EAC)/2+(∠DAC+∠CAB)/2]-(∠ABC)/4
={(∠EAC)/2+[(∠EAC)/2+(90°-∠ABC)]/2}-(∠ABC)/4
=∠EAC/2+∠EAC/4+45°-∠ABC/2-∠ABC/4
=45°+3(∠EAC-∠ABC)/4
=45°+(3/4)*90°
=45°+67.5°
=112.5°
追问
第二步神马意思啊,求详细过程,今天答有加分。
追答
你是问的那个“∴(∠EAC)/2。。。=45°”吗?那是因为等量公理:等量同时除以一个不为“0”的常数仍为等量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询