如图,在平行四边形ABCD内的一点E满足ED垂直AD,垂足为D,

如图,在平行四边形ABCD内的一点E满足ED垂直AD,垂足为D,且角EBC等于角EDC,角ECB=45°,找出图中与EB相等的线段,并加以证明。... 如图,在平行四边形ABCD内的一点E满足ED垂直AD,垂足为D,且角EBC等于角EDC,角ECB=45°,找出图中与EB相等的线段,并加以证明。 展开
t9df5
2013-06-11 · TA获得超过302个赞
知道答主
回答量:93
采纳率:0%
帮助的人:57万
展开全部


解:结论:BE=CD(或BE=AB)

      证明:延长DE交BC于F
              ∵ED⊥AD

               ∴∠ADF=90°
               在□ABCD中

               ∵AD∥BC

               ∴∠DFC=∠ADF=90°
         在Rt△EFC中

               ∵∠ECF=45。

               ∴EF=FC    
          在△BEF与△DCF中
                 AB=AC 

                 AF=AF   

                 FB=FC
            ∴△BEF≌△DCF
           


∴BE=CD    

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式