设A向量=(4,-3)B向量=(2,1)若A向量+tB向量与B向量的夹角为45度,求实数t
1个回答
展开全部
a+tb=(4+2t,-3+t)
(a+tb)*b=2(4+2t)+(-3+t)=5+5t
又有(a+tb)*b=|a+tb||b|cos45
5+5t=根号[(4+2t)^2+(-3+t)^2]*根号(4+1)*根号2/2
25+50t+25t^2=(16+16t+4t^2+9-6t+t^2)*5/2
10+20t+10t^2=5t^2+10t+25
5t^2+10t-15=0
t^2+2t-3=0
(t+3)(t-1)=0
t=-3或t=1
(a+tb)*b=2(4+2t)+(-3+t)=5+5t
又有(a+tb)*b=|a+tb||b|cos45
5+5t=根号[(4+2t)^2+(-3+t)^2]*根号(4+1)*根号2/2
25+50t+25t^2=(16+16t+4t^2+9-6t+t^2)*5/2
10+20t+10t^2=5t^2+10t+25
5t^2+10t-15=0
t^2+2t-3=0
(t+3)(t-1)=0
t=-3或t=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |