求高一数列错位相减的例题,要有详细答案
2013-06-11
展开全部
求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;;
当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方
所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方
所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方。
化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
错位相减法
这个在求等比数列求和公式时就用了
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
解:当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;;
当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方
所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方
所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方。
化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方
Cn=(2n+1)*2^n
Sn=3*2+5*4+7*8+...+(2n+1)*2^n
2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1)
两式相减得
-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1)
=6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1)
=6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和)
=(1-2n)*2^(n+1)-2
所以Sn=(2n-1)*2^(n+1)+2
错位相减法
这个在求等比数列求和公式时就用了
Sn= 1/2+1/4+1/8+....+1/2^n
两边同时乘以1/2
1/2Sn= 1/4+1/8+....+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询