求极限 具体步骤
3个回答
展开全部
let y =1/x
lim(x->+∞) ∫(1->x) [t^2 .(e^(1/t) -1 ) -t ] dt / [ x^2 .ln(1+ 1/x) ]
=lim(y->0) y^2. ∫(1->1/y) [t^2 .(e^(1/t) -1 ) -t ] dt / ln(1+ y)
=lim(y->0) ∫(1->1/y) [t^2 .(e^(1/t) -1 ) -t ] dt /(1/y) (∞/∞)
=lim(y->0) [ (1/y)^2 .(e^y -1 ) - 1/y ]
=lim(y->0) [ (e^y -1 ) - y ] /y^2 (0/0)
=lim(y->0) [ e^y - 1 ] /[2y] (0/0)
=lim(y->0) e^y /2
=1/2
lim(x->+∞) ∫(1->x) [t^2 .(e^(1/t) -1 ) -t ] dt / [ x^2 .ln(1+ 1/x) ]
=lim(y->0) y^2. ∫(1->1/y) [t^2 .(e^(1/t) -1 ) -t ] dt / ln(1+ y)
=lim(y->0) ∫(1->1/y) [t^2 .(e^(1/t) -1 ) -t ] dt /(1/y) (∞/∞)
=lim(y->0) [ (1/y)^2 .(e^y -1 ) - 1/y ]
=lim(y->0) [ (e^y -1 ) - y ] /y^2 (0/0)
=lim(y->0) [ e^y - 1 ] /[2y] (0/0)
=lim(y->0) e^y /2
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询