已知函数f(x)=sin²x+根号3sinxsin(x+½π),求: 1.f(x)的最小正周期 10
2个回答
展开全部
f(x)=sin²x+根号3sinxsin(x+½π)
=(1-cos2x)/2+√3sinxcosx
=-1/2cos2x+√3/2sin2x+1/2
=sin(2x-π/6)+1/2
最小正周期T=2π/2=π
f(x)在区间【0,½π】上的取值范围
因为x∈[0,π/2]
则2x∈[0,π]
则2x-π/6∈[-π/6,5π/6]
所以根据三角函数的性质知
2x-π/6=π/2 时,有最大值为 3/2
2x-π/6=-π/6 时,有最小值为0
所以f(x)的取值范围为[0,3/2]
=(1-cos2x)/2+√3sinxcosx
=-1/2cos2x+√3/2sin2x+1/2
=sin(2x-π/6)+1/2
最小正周期T=2π/2=π
f(x)在区间【0,½π】上的取值范围
因为x∈[0,π/2]
则2x∈[0,π]
则2x-π/6∈[-π/6,5π/6]
所以根据三角函数的性质知
2x-π/6=π/2 时,有最大值为 3/2
2x-π/6=-π/6 时,有最小值为0
所以f(x)的取值范围为[0,3/2]
展开全部
①f(x)=sin²x+根号3sinxsin(x+½π)
=(1-cos2x)/2+√3sinxcosx
=-1/2cos2x+√3/2sin2x+1/2
=sin(2x-π/6)+1/2
∴最小正周期T=2π/2=π
②∵x∈[0,π/2]
∴2x∈[0,π]
∴2x-π/6∈[-π/6,5π/6]
根据三角函数的性质知
当2x-π/6=π/2 时,ymax=3/2
当2x-π/6=-π/6 时,ymin=0
∴f(x)的取值范围为[0,3/2]
=(1-cos2x)/2+√3sinxcosx
=-1/2cos2x+√3/2sin2x+1/2
=sin(2x-π/6)+1/2
∴最小正周期T=2π/2=π
②∵x∈[0,π/2]
∴2x∈[0,π]
∴2x-π/6∈[-π/6,5π/6]
根据三角函数的性质知
当2x-π/6=π/2 时,ymax=3/2
当2x-π/6=-π/6 时,ymin=0
∴f(x)的取值范围为[0,3/2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询