![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
2个回答
展开全部
f'(x)=12x^2+2ax+b
f'(1)=12+2a+b
f(1)=9+a+b
于是函数在点(1,f(1))处的切线为
y-f(1)=f'(1)(x-1)
y=f'(1)(x-1)+f(1)
=f'(1)x-f'(1)+f(1)
=(12+2a+b)x-(a+3)
与y=-12x 对比得
12+2a+b=-12,a+3=0
于是 a=-3,b=-18
故 f(x)=4x³-3x²-18x+5
f'(1)=12+2a+b
f(1)=9+a+b
于是函数在点(1,f(1))处的切线为
y-f(1)=f'(1)(x-1)
y=f'(1)(x-1)+f(1)
=f'(1)x-f'(1)+f(1)
=(12+2a+b)x-(a+3)
与y=-12x 对比得
12+2a+b=-12,a+3=0
于是 a=-3,b=-18
故 f(x)=4x³-3x²-18x+5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询