假设推理系统证明下列公式为定理 ((P∧Q)→R)→(P→(Q→(S∨R)))
1个回答
展开全部
证明:海伦公式:若ΔABC的三边长为a、b、c,则 SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4(这是海伦公式的变形,“负号“-”从a左则向右经过a、b、c”,负号从x轴负轴向正轴扫描一个周期!我觉得这么记更简单,还设个什么l=(a+b=c)/2啊,多此一举!) 证明:设边c上的高为 h,则有 √(a^2-h^2)+√(b^2-h^2)=c √(a^2-h^2)=c-√(b^2-h^2) 两边平方,化简得: 2c√(b^2-h^2)=b^2+c^2-a^2 两边平方,化简得: h=√(b^2-(b^2+c^2-a^2)^2/(4c^2)) SΔABC=ch/2 =c√(b^2-(b^2+c^2-a^2)^2/(4c^2))/2 仔细化简一下,得: SΔABC=√((a+b+c)×(-a+b+c)×(a-b+c)×(a+b-c))/4 设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为 cosC = (a^2+b^2-c^2)/2ab S=1/2*ab*sinC =1/2*ab*√(1-cos^2 C) =1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2] =1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2] =1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)] =1/4*√[(a+b)^2-c^2][c^2-(a-b)^2] =1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)] 设p=(a+b+c)/2 则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2, 上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16] =√[p(p-a)(p-b)(p-c)] 所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询