化简(a^2-a+1/a^2+a+1)+(2a(a-1)^2/a^4+a^2+1)
1个回答
展开全部
首先化简:a^4+a^2+1=(a^4+2a^2+1)-a^2
=(a^2+1)^2-a^2
=(a^2+a+1)(a^2-a+1)
(a^2-a+1/a^2+a+1)+(2a(a-1)^2/a^4+a^2+1)
=(a^2-a+1)/(a^2+a+1)+2a(a-1)^2/(a^2+a+1)(a^2-a+1)
=[(a^2-a+1)^2+2a(a-1)^2]/(a^2+a+1)(a^2-a+1)
=[a^4+a^2+1-2a^3+2a^2-2a+2a(a^2-2a+1)]/(同上)
=(a^4-a^2+1)/(a^4+a^2+1)
=(a^2+1)^2-a^2
=(a^2+a+1)(a^2-a+1)
(a^2-a+1/a^2+a+1)+(2a(a-1)^2/a^4+a^2+1)
=(a^2-a+1)/(a^2+a+1)+2a(a-1)^2/(a^2+a+1)(a^2-a+1)
=[(a^2-a+1)^2+2a(a-1)^2]/(a^2+a+1)(a^2-a+1)
=[a^4+a^2+1-2a^3+2a^2-2a+2a(a^2-2a+1)]/(同上)
=(a^4-a^2+1)/(a^4+a^2+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询