2个回答
展开全部
解:①小题,设vn=1/n,un=1/[n*n^(1/n)],则l=lim(n→∞)vn/un=lim(n→∞)n^(1/n)=e^[lim(n→∞)lnn/n]=1。∴根据比值审敛法,∑vn与∑un具有相同的敛散性。
而,∑vn为p=1的p-级数,发散。∴级数∑1/[n*n^(1/n)]发散。
②小题,当0<a<1时,lim(n→∞)1/(1+a^n)=1≠0,按照级数收敛的必要条件可知,其发散。当a=1时,显然,∑1/(1+a^n)→∞,发散。当a>1时,设vn=1/a^n,un=1/(1+a^n)],则l=lim(n→∞)vn/un=lim(n→∞)(1+a^n)/a^n=1。∴根据比值审敛法,∑vn与∑un具有相同的敛散性。
而,∑vn为首项为1/a、公比q=1/a的等比数列,且丨q丨<1,∴∑vn收敛。
∴综上所述,0<a≤1时,级数∑1/(1+a^n)发散;a>1时,级数∑1/(1+a^n)收敛。
供参考。
而,∑vn为p=1的p-级数,发散。∴级数∑1/[n*n^(1/n)]发散。
②小题,当0<a<1时,lim(n→∞)1/(1+a^n)=1≠0,按照级数收敛的必要条件可知,其发散。当a=1时,显然,∑1/(1+a^n)→∞,发散。当a>1时,设vn=1/a^n,un=1/(1+a^n)],则l=lim(n→∞)vn/un=lim(n→∞)(1+a^n)/a^n=1。∴根据比值审敛法,∑vn与∑un具有相同的敛散性。
而,∑vn为首项为1/a、公比q=1/a的等比数列,且丨q丨<1,∴∑vn收敛。
∴综上所述,0<a≤1时,级数∑1/(1+a^n)发散;a>1时,级数∑1/(1+a^n)收敛。
供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |