2个回答
展开全部
选B。其过程是,按照渐近线的定义,有
①lim(x→-∞)y=lim(x→-∞)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=0,∴有水平渐近线y=0。
②lim(x→+∞)y/x=lim(x→+∞)(1/x)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=∞,∴无斜渐近线。
③im(x→0+)y=lim(x→0+)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=∞,∴有铅直渐近线x=0。
故,选B。供参考。
①lim(x→-∞)y=lim(x→-∞)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=0,∴有水平渐近线y=0。
②lim(x→+∞)y/x=lim(x→+∞)(1/x)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=∞,∴无斜渐近线。
③im(x→0+)y=lim(x→0+)[e^(x+1/x)]arctan[x+x+1)/(x-1)(x+2)]=∞,∴有铅直渐近线x=0。
故,选B。供参考。
追问
水平渐近线怎么判断,e的无穷次方为负无穷,
明白了
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询