怎么用十字相乘法。十字相乘法口诀是什么
十字分解法口诀:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
扩展资料
十字分解法对于型如 Ax²+Bxy+Cy²+Dx+Ey+F 的多项式的因式分解,常采用的方法是待定系数法。这种方法运算过程较繁。对于这问题,若采用“双十字分解法”(主元法),就能很容易将此类型的多项式分解因式。
1、例:3x²+5xy-2y²+x+9y-4=(x+2y-1)(3x-y+4)
因为3=1×3,-2=2×(-1),-4=(-1)×4,
而1×(-1)+3×2=5,2×4+(-1)(-1)=9,1×4+3×(-1)=1
要诀:把缺少的一项当作系数为0,0乘任何数得0,
2、例:ab+b²+a-b-2
=0×1×a²+ab+b²+a-b-2
=(0×a+b+1)(a+b-2)
=(b+1)(a+b-2)
提示:设x²=y,用拆项法把cx²拆成mx²与ny之和。
参考资料来源:百度百科-十字相乘法
用十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法口诀:拆两头,凑中间。分解二次三项式,尝试十字相乘法。
十字相乘法的方法:
十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。
十字相乘法的优点:
用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
十字相乘法的缺陷:
1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。
3、十字相乘法比较难学。