
1个回答
展开全部
这是因为矩阵A的秩等于1时,各行成比例,因此可以把矩阵分解成A=αβ^T
其中α,β都是非零列向量
则A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T
令t=β^Tα,则上式可写成A^2=α(t)β^T
=tαβ^T
=tA
其中α,β都是非零列向量
则A^2=(αβ^T)(αβ^T)=α(β^Tα)β^T
令t=β^Tα,则上式可写成A^2=α(t)β^T
=tαβ^T
=tA
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询