设直线L经过点M0(1,5),倾斜角三分之π,求直线L和直线x-y-2√3=0的交点到点M0的距离
1个回答
展开全部
很明显用参数方程解
直线L的参数方程
x=1+t*cos(π/3)=1+(1/2)t
y=5+t*sin(π/3)=5+(√3/2)t
直线L和直线x-y-2√3=0的交点到点M0的距离
将参数方程代入
1+(1/2)t-5-(√3/2)t-2√3=0
[(1/2)-(√3/2)]t=4+2√3
t=(8+4√3)/(1-√3)
∴ 所求距离=|t|=(8+4√3)/(√3-1)=(4+2√3)(√3+1)=6√3+16
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
直线L的参数方程
x=1+t*cos(π/3)=1+(1/2)t
y=5+t*sin(π/3)=5+(√3/2)t
直线L和直线x-y-2√3=0的交点到点M0的距离
将参数方程代入
1+(1/2)t-5-(√3/2)t-2√3=0
[(1/2)-(√3/2)]t=4+2√3
t=(8+4√3)/(1-√3)
∴ 所求距离=|t|=(8+4√3)/(√3-1)=(4+2√3)(√3+1)=6√3+16
很高兴为您解答,祝你学习进步!
有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询