![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知函数f(x)=㏑(1+x)-mx.(1)当m=1时,求函数f(x)的单调递减区间;(2)求函数f(x)的极值. 20
展开全部
(1)
m = 1, f(x) = ln(x + 1) - x
f'(x) = 1/(x + 1) - 1 = -x/(x + 1) = 0
x = 0
-1 < x < 0: f'(x) > 0
x > 1: f'(x) < 0, 单调递减
(2)
(i) m = 0
f(x) = ln(x + 1), f'(x) = 1/(x + 1); 在定义域x > -1内, f'(x) > 0, 无极值
(ii) m = 1
见(i), 极大值: f(0) = 0
(ii) m ≠ 0
f'(x) = 1/(x + 1) - m = (1 - m - mx)/(x + 1) = 0
x = (1 - m)/m = 1/m - 1
m < 0时, x = 1/m - 1 < -1, 在定义域外, 无极值
m > 0时, x = 1/m - 1 > -1, 在定义域内; 显然f'(x)左正右负
极大值f(1/m - 1) = ln(1/m - 1 + 1) -m(1/m -1) = ln(1/m) - (1 - m) = m - 1 - lnm
m = 1, f(x) = ln(x + 1) - x
f'(x) = 1/(x + 1) - 1 = -x/(x + 1) = 0
x = 0
-1 < x < 0: f'(x) > 0
x > 1: f'(x) < 0, 单调递减
(2)
(i) m = 0
f(x) = ln(x + 1), f'(x) = 1/(x + 1); 在定义域x > -1内, f'(x) > 0, 无极值
(ii) m = 1
见(i), 极大值: f(0) = 0
(ii) m ≠ 0
f'(x) = 1/(x + 1) - m = (1 - m - mx)/(x + 1) = 0
x = (1 - m)/m = 1/m - 1
m < 0时, x = 1/m - 1 < -1, 在定义域外, 无极值
m > 0时, x = 1/m - 1 > -1, 在定义域内; 显然f'(x)左正右负
极大值f(1/m - 1) = ln(1/m - 1 + 1) -m(1/m -1) = ln(1/m) - (1 - m) = m - 1 - lnm
展开全部
1.把m=1带进去,f(x)=㏑(1+x)-x,f'(x)=(1/x-1)-1,令f'(x)<0,有x>2.
2.f'(x)=(1/x-1)-m,令f'(x)=0,有x=(1/m)+1.
2.f'(x)=(1/x-1)-m,令f'(x)=0,有x=(1/m)+1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)f'(x)=1/(1+x)-1≤0,故单调递减区域为(-∞,-1)∪(0,+∞)
(2)即f'(x)=1/(1+x)-m=0,即x=1/m-1,带入f(x),即f(x)的极值为ln(1/m)-1+m,其中m>0
(2)即f'(x)=1/(1+x)-m=0,即x=1/m-1,带入f(x),即f(x)的极值为ln(1/m)-1+m,其中m>0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询