大学高数题,求大佬教一下

图片的第四题,大佬能用拉格朗日乘数解一下吗,额,我知道有其他的解法,我是想用这题来巩固一下拉格朗日乘数。... 图片的第四题,大佬能用拉格朗日乘数解一下吗,额,我知道有其他的解法,我是想用这题来巩固一下拉格朗日乘数。 展开
 我来答
那林子的小鸟
高粉答主

2019-07-05 · 每个回答都超有意思的
知道大有可为答主
回答量:5229
采纳率:0%
帮助的人:250万
展开全部
空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为
d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)
设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z-1=0的距离为
d(x,y,z)=|x+y+z-1|/√3
令f(x,y,z)=d^2(x,y,z)=(x+y+z-1)^2/3,g(x,y,z)=z-(x^2+y^2)=0
则相当于求f(x)在约束条件g(x)=0下的极值
用拉格朗日乘数法,构造函数F(x,y,z)=f(x,y,z)+λg(x,y,z)
分别对x,y,z,λ求导,并取导数为0,可得
dF/dx=2/3*(x+y+z-1)-λ*2x=0
dF/dy=2/3*(x+y+z-1)-λ*2y=0
dF/dz=2/3*(x+y+z-1)-λ=0
dF/dλ=z-(x^2+y^2)=0
联立上述方程,可解得
λ=-1,x=-1/2,y=-1/2,z=1/2
λ=2,x=1,y=1,z=2
代入距离公式可得
d(-1/2,-1/2,1/2)=|-1/2-1/2+1/2-1|/√3=√3/2
d(1,1,2)=|1+1+2-1|/√3=√3
∴抛物面上的点到平面的最短距离为√3/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式