数据分析师要学什么?
数据分析师要学:数学知识、分析工具、编程语言。
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
2022-03-14 广告
数据分析师要学数学、统计技能、机器学习的概念、代码、数据库、数据池及分布式存储、数据修改和数据清洗技术等等。
数学和统计技能。一个好的数据科学家必须能够理解数据告诉你的内容,做到这一点,你必须有扎实的基本线性代数,对算法和统计技能的理解。在某些特定场合可能需要高等数学,但这是一个好的开始场合。
了解机器学习的概念。机器学习是下一个新兴词,却和大数据有着千丝万缕的联系。机器学习使用人工智能算法将数据转化为价值,并且无需显式编程。
学习代码。数据科学家必须知道如何调整代码,以便告诉计算机如何分析数据。从一个开放源码的语言如python那里开始吧。
了解数据库、数据池及分布式存储。数据存储在数据库、数据池或整个分布式网络中。以及如何建设这些数据的存储库取决于你如何访问、使用、并分析这些数据。如果当你建设你的数据存储时没有整体架构或者超前规划,那后续对你的影响将十分深远。
学习数据修改和数据清洗技术。数据修改是将原始数据到另一种更容易访问和分析的格式。数据清理有助于消除重复和“坏”数据。两者都是数据科学家工具箱中的必备工具。
了解良好的数据可视化和报告的基本知识。你不必成为一个平面设计师,但你确实需要深谙如何创建数据报告,便于外行的人比如你的经理或CEO可以理解。
添加更多的工具到您的工具箱。一旦你掌握了以上技巧,是时候扩大你的数据科学工具箱了,包括Hadoop、R语言和Spark。这些工具的使用经验和知识将让你处于大量数据科学求职者之上。
练习。在你在新的领域有一个工作之前,你如何练习成为数据科学家?使用开源代码开发一个你喜欢的项目、参加比赛、成为网络工作数据科学家、参加训练营、志愿者或实习生。最好的数据科学家在数据领域将拥有经验和直觉,能够展示自己的作品,以成为应聘者。
数据分析师要学:SQL、Python语言、R语言、概率论及统计学知识。
1、SQL
结构化查询语言,简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统,同时也是数据库脚本文件的扩展名,结构化查询语言是高级的非过程化编程语言,允许用户在高层数据结构上工作,结构化查询语言语句可以嵌套,这使它具有极大的灵活性和强大的功能。
2、Python语言
Python是一种计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
3、R语言
R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具,R是统计领域广泛使用的诞生于1980年左右的S语言的一个分支。可以认为R是S语言的一种实现。而S语言是由AT&T贝尔实验室开发的一种用来进行数据探索、统计分析和作图的解释型语言。
4、概率论
概率论,是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。
1、R语言也好,Python语言也好,学习一门新的编程语言
我曾见到有同学同时学习R语言和Python语言,最后落得两手空空。这种做法是很致命的。你一定要沉下心来专攻一门。
鉴于这两种语言都是开放源代码工具,所以在公司里都有广泛运用。Python被公认为最简单的编程语言,而R语言一直都是最受青睐的统计工具。学习哪一门的决定权在你,因为两个同等出色。
推荐课程:学习Codecademy上的Python语言课程;学习DataCamp上的R语言课程。
PS:推荐R语言和Python入门课程《Python入门:数据挖掘实战》、《R语言入门》。
2、学习统计学和数学
统计学的内容全都是关于假设和数列,然而没有统计学和数学的知识你很难深入到数据行业里,这是数据科学家的重中之重。
如果你不擅长数学,那现在是时候走出困境了。面对深奥的统计、几何和概率领域知识时,一定不要惊慌。可汗学院(Khan Academy)、Udacity等站点上都有很多优质的统计学课程。下载APP,现在就能开始学习。
推荐课程:Udacity上的推论统计学和描述统计学课程;可汗学院(Khan Academy)上的几何课程。
数据分析师要学:
1,业务。
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、管理。
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、分析。
指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、工具。
指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、设计。
懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。