5个回答
展开全部
x^2-2x = (x-1)^2 -1
let
x-1 = secu
dx = secu.tanu du
x=2, u=0
x=+∞ , u=π/2
∫(2->+∞) dx/[(x-1)^4.√(x^2-2x)]
=∫(0->π/2) secu.tanu du/[(secu)^4.tanu]
=∫(0->π/2) (cosu)^3 du
=∫(0->π/2) (cosu)^2 dsinu
=∫(0->π/2) [ 1-(sinu)^2] dsinu
=[ u -(1/3)(sinu)^2]|(0->π/2)
= π/2 - 1/3
let
x-1 = secu
dx = secu.tanu du
x=2, u=0
x=+∞ , u=π/2
∫(2->+∞) dx/[(x-1)^4.√(x^2-2x)]
=∫(0->π/2) secu.tanu du/[(secu)^4.tanu]
=∫(0->π/2) (cosu)^3 du
=∫(0->π/2) (cosu)^2 dsinu
=∫(0->π/2) [ 1-(sinu)^2] dsinu
=[ u -(1/3)(sinu)^2]|(0->π/2)
= π/2 - 1/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-12-12 · 知道合伙人教育行家
关注
展开全部
x^2 - 2x = (x-1)^2 - 1, 令 x-1 = secu, 则 x = 1+secu, dx = secutanudu
I = ∫<2, +∞>dx/[(x-1)^4 √(x^2-2x)] = ∫<0, π/2>secutanudu/[(secu)^4 tanu]
= ∫<0, π/2>du/(secu)^3 = ∫<0, π/2>(cosu)^3du = ∫<0, π/2>[1-(sinu)^2]dsinu
= [sinu-(sinu)^3/3]<0, π/2> = 2/3
I = ∫<2, +∞>dx/[(x-1)^4 √(x^2-2x)] = ∫<0, π/2>secutanudu/[(secu)^4 tanu]
= ∫<0, π/2>du/(secu)^3 = ∫<0, π/2>(cosu)^3du = ∫<0, π/2>[1-(sinu)^2]dsinu
= [sinu-(sinu)^3/3]<0, π/2> = 2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询