煤层气的特征
2020-01-15 · 技术研发知识服务融合发展。
(一)煤层气的物理性质
煤层气的物理性质与煤层气的气体组成有关,不同气体组成的煤层气其物理性质亦有差异,但总的来说煤层气具有以下的物理性质:
1.煤层气分子的大小和分子量
煤层气分子的大小介于0.32~0.55nm之间,多为近似值(表4-2)。分子的偏心度或非均质度即偏心因子(两个分子间的相互作用力偏离分子中心之间的作用力的程度,为反映物质分子形状、极性和大小的参数),甲烷最小(只有0.008),分子平均自由程(气体分子运动过程中与其他分子两次碰撞之间的距离)约为其分子平均直径的200倍。其分子量由组成煤层气的各种分子的百分含量累加而成,称为表观分子量。
表4-2煤中吸附介质分子直径、沸点和分子自由程(0℃,0.101325MPa)
(据张新民等,2002)
2.煤层气的密度
标准状态下(1atm,温度15.55℃)单位体积煤层气的质量,单位为kg/m3。煤层气在地下的密度随分子量和压力增大而增大、随温度的升高而减小。标准状态下煤层气的密度为0.716kg/m3。
煤层气的相对密度,是指同温度、压力条件下(1atm,温度15.55℃或20℃)煤层气密度与空气密度的比值。通常煤层气的相对密度为0.554。
3.煤层气的黏度
黏度是流体运动时其内部质点沿接触面相对运动、产生内摩擦力以阻抗流体变形的性质。常用动力黏度系数即流体内摩擦切应力与切应变率的比值来表示,其单位为泊(P)。煤层气的黏度很小,在地表常压、20℃时,甲烷的动力黏度系数为1.08×10-5MPa·s。表示黏度的参数还有运动黏度系数(即动力黏度与密度的比值,单位:cm2/s)和相对黏度(即液体的绝对黏度与水的绝对黏度的比值)。
煤层气的黏度与气体的组成、温度、压力等条件有关,在正常压力下黏度随温度的升高而变大,这与分子运动加速、气体分子碰撞次数增加有关,而随分子量增大而变小。在较高压力下,煤层气的黏度随压力增加而增长、随温度的升高而减小、随分子量的增大而增大。
4.煤层气的临界点
临界温度,是指气相纯物质维持液相的最高温度,高于这一温度气体即不能用简单升高压力的办法(不降低温度)使之转化为液体。临界压力,是指气、液两相共存的最高压力,即在临界温度时气体凝析所需的压力。高于临界温度,无论压力多大气体均不会液化;高于临界压力,不管温度多少液态和气态亦不能同时存在。只有当温度和压力均超过其临界温度和临界压力时,才称为超临界状态。
地层条件下,煤层气超临界吸附的现象是存在的。但只有当煤层气压力(气压)超过4.604MPa(表4-2)才真正出现超临界流体。实际上,在我国煤矿瓦斯实测压力中超过此压力的矿井是比较少的。但对于原位且处于封闭系统的煤储层而言,储层中水压等于气压,只要煤层埋深超过500m煤层气就可能成为超临界流体。
对于甲烷和氮气,任一埋深储层温度均高于临界温度,无论压力多大均不会液化。对于二氧化碳,当储层温度低于31.06℃(表4-2),对于乙烷,当储层温度低于32.37℃(表4-2)而储层压力(气压)高于液化压力时,二者均可以呈液态形式存在。按正常地温梯度3℃/100m、正常储层压力梯度0.98MPa/100m,设恒温带深度为20m、温度为10℃,则埋深500m左右时储层温度约为25℃、储层压力为4.9MPa,此时二者均低于临界温度和压力,二氧化碳和乙烷以气态形式存在;当埋深达到800m时储层温度约为34℃,高于临界温度,二氧化碳和乙烷仍为气态。但当二氧化碳压力大于7.38MPa、乙烷压力大于4.98MPa时,二氧化碳和乙烷有可能成为超临界流体;只有在500~800m范围内的局部层段(封闭体系),储层温度低于临界温度、储层压力高于液化压力时,二氧化碳和乙烷才可能以液态形式存在(图4-3)。
上面所述临界温度和临界压力是对单一气体组分而言的。在自然条件下,煤层气通常是多种组分气体的混合物。混合气体的临界温度高于其最低沸点组分的临界温度、低于最高沸点的临界温度,等于组成混合气体的各个组分的绝对临界温度与相应的分子浓度的乘积之和。相应地也可以计算出混合气体的临界压力。这种计算出来的临界温度和临界压力叫做混合气体的拟临界温度和拟临界压力。
5.煤层气的溶解度
煤层气能不同程度地溶解于煤储层的地下水中,不同的气体溶解度差别很大。20℃、1atm下单位体积水中溶解的气体体积称为溶解度(m3气/m3水),溶解度同气体压力的比值称为溶解系数(m3/m3·atm)。温度对溶解度的影响较复杂,温度<80℃时,随温度升高溶解度降低;温度>80℃时,溶解度随温度升高而增加(图4-4)。甲烷溶解度随压力的增加而增加,低压时呈线性关系,高压时(>10MPa)呈曲线关系(图4-5);甲烷溶解度随矿化度的增加而减少(图4-5)。所以在高温高压的地下水中溶解气明显增加。如果煤层水被CO2饱和时,则甲烷在水中的溶解度会明显增大。
图4-3二氧化碳在正常地温条件下的液化区间图
图4-4甲烷在水中的溶解度与温度的关系图 (据傅雪海等,2007)
图4-5不同温度、不同矿化度条件下的甲烷溶解度与压力的关系图 (据傅雪海等,2007)
6.主要气体组分的性质
甲烷为无色、无味、无臭、无毒气体(表4-3)。但煤储层中往往含有少量其他芳香族碳氢气体,因此常常伴着一些苹果香味。在大气压力为0.101325MPa、温度为0℃的标准状态下,甲烷的分子量为16.043,分子大小约为0.33~0.42nm;其密度为0.677kg/m3,相对密度为0.554(比空气轻),当空气中混有5.3%~16.0%浓度的甲烷时遇火即可燃烧或爆炸;动力黏度为1.084×10-5Pa·s;临界温度为-82.57℃,临界压力为4.604MPa(表4-2);热值约为37.62kJ/m3。
表4-3煤层气成分的物理性质表
氮气是一种无色、无臭、无味的气体,微溶于水,0℃时1mL水仅能溶解0.023mL氮气。在1atm、15.55℃时,其密度为1.182kg/m3,相对密度为0.967(表4-2)。
二氧化碳为无色、无臭、略具酸味气体。在大气压力为0.101325MPa、温度为0℃的标准状态下,二氧化碳的分子量为44.010,分子大小约为0.33~0.47nm;密度为1.858kg/m3,相对密度为1.519(比空气重),突然喷出可使人窒息;其动力黏度为1.466×10-5Pa·s;其临界温度为31.06℃、临界压力为7.384MPa(表4-2)。
(二)煤层气的同位素特征
Law(1993)研究认为,世界各地煤层气的同位素差异较大,甲烷的δ13C1值分布范围很宽,介于-80‰~-16.8‰之间;乙烷δ13C2的值介于-3.29‰~-2.28‰之间;甲烷的δD值分布在-33.3‰~-11.7‰之间;二氧化碳的δ13C值为-2.66‰~-18.6‰。从煤样中解吸出的甲烷的δ13C1值比开采气或自由(游离)气体中甲烷的δ13C1值高出几个千分点。这是因为在解吸作用过程中发生了同位素分馏作用,δ13C1优先被解吸出来。
国内测试资料表明,煤层气δ13C1变化于-78‰~-28‰之间,分布范围广,同位素组成总体上偏轻,而且不同地区、不同地质时代和不同煤阶煤中的δ13C1分布特征亦有所不同。就地区而言,华北煤层气δ13C1为-78‰~-28‰,东北煤层气δ13C1为-68‰~-49‰,华南煤层气δ13C1为-68‰~-25‰(图4-6)。显然,我国煤层气的δ13C1地域分布总体上体现出不同地质时代不同构造背景下煤中有机质生烃演化的特点。华北和华南的煤层主要形成于晚古生代,经历了多阶段构造演化,煤化作用的地质背景较为复杂,煤阶跨度大,生气历程长,δ13C1变化大;东北煤层主要形成于中-新生代,热演化历程及其控制因素相对简单,煤阶普遍较低,δ13C1分布较为集中。
就全国来看,煤层气δ13C1与煤阶之间的关系尽管离散性较大,但规律性仍然相当明显(图4-7)。δ13C1随镜质组反射率增高而变重,但二者之间的这种正相关关系并不是线性的。当镜质组反射率小于2.0%时,δ13C1值增大的速率较快,由-65‰(镜质组反射率0.3%左右)增至-25‰(镜质组反射率2.0%左右),此后直到镜质组反射率4.0%附近δ13C1值仍低于-20‰。换言之,只有在进入无烟煤阶段之后,煤层气的δ13C1值才开始接近或落入腐殖型常规天然气δ13C1值的分布范畴(>-35‰)。
图4-6中国煤层气稳定碳同位素的地域分布图 (据叶建平等,1998)
图4-7中国煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)
进一步分析特定地区煤层气稳定碳同位素的演化趋势发现,不仅δ13C1值与镜质组反射率之间的离散性显著减小,而且存在着有别于全国性趋势的区域规律。华北和华南煤层气δ13C1值与全国性规律一致、随煤阶增高而变重,且在进入无烟煤阶段后离散性明显变小(图4-8a,b)。东北煤层气δ13C1值的演化却与此相反,煤阶增高而δ13C1值变小(图4-8c)。
腐殖型常规天然气δ13C1与镜质组反射率之间呈对数相关关系,华北、华南和全国δ13C1值与煤阶之间的相关趋势与其一致,东北地区则与此相反,暗示东北煤层气稳定碳同位素的分布另有其他控制因素。
图4-8不同地区煤层气稳定碳同位素分布与煤阶之间关系图 (据叶建平等,1998)
Rice et al.(1993)总结美国和加拿大煤层气同位素资料后,得出气的稳定碳同位素δ13C1值与煤阶有很好的相关关系。一般低煤阶煤的δ13C1值小,煤阶增加而δ13C1值变大。但是同一煤阶δ13C1值具有很大的变化范围(图4-9)。此外,δ13C1值与现今煤层埋深亦有较好的对应关系,在煤阶一定情况下,浅部煤层气由轻同位素组成,深部煤层气则由重同位素组成。
图4-9煤层气δC1与Ro,max的关系图 据Rice et al.,1993)