若随机变量x的概率密度为f(x){ax2+bx+c,0<x<1,0,其他}且E(X)=0.5,D(X)=0.15,求a,b,c.
1个回答
2013-06-15
展开全部
解:这题变相考你定积分而已。
EX = 定积分 (x从0到1)(ax^2 + bx + c)x dx
= ax^4/4 + bx^3/3 + cx^2/2 | 0到1
= a/4 + b/3 + c/2 = 0.5, (1)
EX^2 = 定积分 (x从0到1) (ax^2 + bx + c)x^2 dx
= ax^5/5 + bx^4/4 + cx^3/3 | 0到1
= a/5 + b/4 + c/3 ,
于是DX = (a/5 + b/4 + c/3) - 0.25 = 0.15,于是
a/5 + b/4 + c/3 = 0.4, (2)
最后一个条件就是概率密度本身的积分要等于1:
1 = 定积分 (x从0到1) ax^2 + bx + c dx
= ax^3/3 + bx^2/2 + cx | 0到1
= a/3 + b/2 + c , (3)
联立(1),(2),(3),可以解出:
a = 12, b = -12, c = 3.
EX = 定积分 (x从0到1)(ax^2 + bx + c)x dx
= ax^4/4 + bx^3/3 + cx^2/2 | 0到1
= a/4 + b/3 + c/2 = 0.5, (1)
EX^2 = 定积分 (x从0到1) (ax^2 + bx + c)x^2 dx
= ax^5/5 + bx^4/4 + cx^3/3 | 0到1
= a/5 + b/4 + c/3 ,
于是DX = (a/5 + b/4 + c/3) - 0.25 = 0.15,于是
a/5 + b/4 + c/3 = 0.4, (2)
最后一个条件就是概率密度本身的积分要等于1:
1 = 定积分 (x从0到1) ax^2 + bx + c dx
= ax^3/3 + bx^2/2 + cx | 0到1
= a/3 + b/2 + c , (3)
联立(1),(2),(3),可以解出:
a = 12, b = -12, c = 3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询