已知函数f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x
已知函数f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x(1)若f(x)在x=1处取得极大值,求实数a的值;(2)若任意m∈R,直线y=kx+m都不是曲...
已知函数f(x)=1/3x^3-1/2(2a+1)x^2+(a^2+a)x
(1)若f(x)在x=1处取得极大值,求实数a的值;
(2)若任意m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;
(3)若a>-1,求f(x)在区间[0,1]上的最大值。 展开
(1)若f(x)在x=1处取得极大值,求实数a的值;
(2)若任意m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;
(3)若a>-1,求f(x)在区间[0,1]上的最大值。 展开
1个回答
展开全部
(1)f'(x)=x^2-(2a+1)x+a^2+a,令f'(x)=0,得x=a或x=a+1,由题意知f(x)在(-∞,a)、(a+1,+∞)上单调递增,在(a,a+1)上单调递减,故f(x)在x=a处取得极大值,故a=1
(2)由题意知,f'(x)=k无解,即x^2-(2a+1)x+a^2+a-k=0无解,所以(2a+1)^2-4(a^2+a-k)=4k+1<0,得k<-1/4
(3)当-1<a<0时,f(x)在[0,a+1]上单调递减,(a+1,1)上单调递增,f(0)=0,f(1)=a^2-1/6故当-1<a≤-√6/6时,f(x)max=f(1)=a^2-1/6,当-√6/6<a<0时,f(x)max=f(0)=0
当0≤a<1时,f(x)在[0,a]上单调递增,在(a,1)上单调递减,故f(x)max=f(a)=1/3a^3+1/2a^2
当a≥1时,f(x)在区间[0,1]上单调递增,故f(x)max=f(1)=a^2-1/6
(2)由题意知,f'(x)=k无解,即x^2-(2a+1)x+a^2+a-k=0无解,所以(2a+1)^2-4(a^2+a-k)=4k+1<0,得k<-1/4
(3)当-1<a<0时,f(x)在[0,a+1]上单调递减,(a+1,1)上单调递增,f(0)=0,f(1)=a^2-1/6故当-1<a≤-√6/6时,f(x)max=f(1)=a^2-1/6,当-√6/6<a<0时,f(x)max=f(0)=0
当0≤a<1时,f(x)在[0,a]上单调递增,在(a,1)上单调递减,故f(x)max=f(a)=1/3a^3+1/2a^2
当a≥1时,f(x)在区间[0,1]上单调递增,故f(x)max=f(1)=a^2-1/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询