在五边形ABCDE中,∠A=∠B=∠DCB=∠D=∠DEA,且∠DEC=∠DCE.试判断AB与EC的关系.你是怎么得来的?

 我来答
内田小哥的嗯嗯
2013-06-15 · TA获得超过641个赞
知道小有建树答主
回答量:190
采纳率:0%
帮助的人:63.8万
展开全部
证明:
∵∠A+∠B+∠BCD+∠D+∠DEA=(5-2)×180=540,且∠A=∠B=∠BCD=∠D=∠DEA
∴∠A=∠B=∠BCD=∠D=∠DEA=540/5=108
∵∠D+∠DEC+∠DCE=180
∴∠DEC+∠DCE=180-∠D=180-108=72
∵∠DEC=∠DCE
∴2∠DEC=72
∴∠DEC=72/2=36
∴∠AEC=∠DEA-∠DEC=108-36=72
∴∠AEC+∠A=72+108=180
∴AB∥CE (同旁内角互补,两直线平行)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式