线性代数:证明向量组β,β+α1,β+α2,...β+αr线性无关

 我来答
JZNeo
2013-10-27 · 超过14用户采纳过TA的回答
知道答主
回答量:23
采纳率:0%
帮助的人:31.7万
展开全部
为了方便我用a代表alpha,b代表beta
设有 k0b+k1(b+a1)+k2(b+a2)+……+kr(b+ar)=0
则有(k0+k1+k2……+kr)b+k1a1+k2a2+……+krar=0 (2)
左乘A有 (k0+k1+k2……+kr)Ab+k1Aa1+k2Aa2+……+krAar=0
其中Aai(i=1,2,3……r)=0,所以(k0+k1+k2……+kr)Ab=0
又因为Ab不等于0,则k0+k1+k2……+kr=0
所以(2)式有k1a1+k2a2+……+krar=0,因为a1,a2……ar线性无关,所以ki(i=1,2……r)=0
所以k0=0
所以k0b+k1(b+a1)+k2(b+a2)+……+kr(b+ar)=0,的系数全为0,向量组线性无关
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式