设随机变量X-N(0 1)求Y=e^x概率密度
1个回答
展开全部
X~N(0,1),y=e^(-x) y>0
X的密度函数是fX(x)=1/√2π*e^(-x^2/2)
那么
FY(y)=P(Y<=y)=P(e^(-x)<=y)=P(x>=-lny)=1-P(x< -lny)
=1-FX(-lny) FX(x) FY(y)表示XY的分布函数
所以y的密度函数是:
fY(y)=FY'(y)=(1-FX(-lny))'=(-1)*(FX(-lny)'*(-lny)'
=(-1)*fX(-lny)*(-1/y)
=1/y*1/√2π*e^(-(-lny)^2/2)
=1/y*1/√2π*e^((lny)^2/2) y>0
X的密度函数是fX(x)=1/√2π*e^(-x^2/2)
那么
FY(y)=P(Y<=y)=P(e^(-x)<=y)=P(x>=-lny)=1-P(x< -lny)
=1-FX(-lny) FX(x) FY(y)表示XY的分布函数
所以y的密度函数是:
fY(y)=FY'(y)=(1-FX(-lny))'=(-1)*(FX(-lny)'*(-lny)'
=(-1)*fX(-lny)*(-1/y)
=1/y*1/√2π*e^(-(-lny)^2/2)
=1/y*1/√2π*e^((lny)^2/2) y>0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询