若2x-3y-3z=0,x+3y-14z=0,x,y,z不全为0,则(x²+y²+z²)/(xy+yz+zx)的值是多少?

皮皮鬼0001
2013-06-15 · 经历曲折坎坷,一生平淡。
皮皮鬼0001
采纳数:38061 获赞数:137594

向TA提问 私信TA
展开全部
解由2x-3y-3z=0,
x+3y-14z=0
两式相加得
3x-17z=0
令x=17m
则z=3m
把x=17m,z=3m代入2x-3y-3z=0,
即34m-3y-3*3m=0
解得y=25/3m
即x=17m,y=25/3m,z=3m
即(x²+y²+z²)/(xy+yz+zx)
=((17m)²+(25/3m)²+(3m)²)/(17m*25m/3+25m/3*3m+17m*3m)
=((17)²+(25/3)²+(3)²)/(17*25/3+25/3*3+17*3)
=(289+625/9+9)/(425/3+25+51)
=(289*9+625+81)/(425*3+25*9+51*9)
=3307/1959
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式