非齐次线性方程组
3个回答
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
占坑。明天回答。
xj表未知量,aij称系数,bi称常数项。
称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r
当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。
xj表未知量,aij称系数,bi称常数项。
称为系数矩阵和增广矩阵。若x1=c1,x2=c2,…,xn=cn代入所给方程各式均成立,则称(c1,c2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。线性方程组主要讨论的问题是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。这几个问题均得到完满解决:所给方程组有解,则秩(A)=秩(增广矩阵);若秩(A)=秩=r,则r=n时,有唯一解;r
当非齐次线性方程组有解时,解唯一的充要条件是对应的齐次线性方程组只有零解;解无穷多的充要条件是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解和有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有 ,即不一定有解。
克莱姆法则(见行列式)给出了一类特殊线性方程组解的公式。n个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。
线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-12-09
展开全部
步骤:(1)将增广阵化为阶梯阵;
(2)当r(A)=r(增广阵)=r 时,把非主元列所对应的n – r 个变量作为自由元;
(3)令所有自由元为 0,得AX= B 的特解X0;
(4)不计最后一列,分别令一个自由元为1, 其余为0,即可得到AX= 0 的基础解系X1,X2… ,Xn-r
(5)所求通解即为X=X0+k1X1+k2X2+……+knXn
(2)当r(A)=r(增广阵)=r 时,把非主元列所对应的n – r 个变量作为自由元;
(3)令所有自由元为 0,得AX= B 的特解X0;
(4)不计最后一列,分别令一个自由元为1, 其余为0,即可得到AX= 0 的基础解系X1,X2… ,Xn-r
(5)所求通解即为X=X0+k1X1+k2X2+……+knXn
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询