
集合A={x|x^2-2x-8<0,x∈R},B={x|x^2-3ax+2a^2=0}
1个回答
展开全部
若B真包含于A 则a的取值范围-1<a<2
若A和B的交集为空集a的取值范围{a/a≧4,或a≦-1}
若A和B的交集为空集a的取值范围{a/a≧4,或a≦-1}
追问
求过程
追答
X^2-2X-8=0解得 X=-2或 X=4所以A={-2<X<4}X^2-3aX+2a^2=(X-2a)(X-a)=0 X=2a或X=a 故B={2a,a}B真包含于A时,-2<2a<4 且-2<a<4故-1<a<2B和A交集为空集时,2a≦-2或a≧4故a≦-1或a≧4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询