这个极限怎么求?
2个回答
展开全部
用洛比达法则得
lim<x→+∞>[(100x^99+15x^4)/(x^100+3x^5+1)]/[(20x^19-6)/(x^20-6x+1)]
= lim<x→+∞>(100x^99+15x^4)(x^20-6x+1)/[(x^100+3x^5+1)(20x^19-6)]
(分子分母同除以 x^119)
= lim<x→+∞>(100+15/x^95)(1-6/x^14+1/x^20)/[(1+3/x^95+1/x^100)(20-6/x^19)]
= 100/20 = 5
lim<x→+∞>[(100x^99+15x^4)/(x^100+3x^5+1)]/[(20x^19-6)/(x^20-6x+1)]
= lim<x→+∞>(100x^99+15x^4)(x^20-6x+1)/[(x^100+3x^5+1)(20x^19-6)]
(分子分母同除以 x^119)
= lim<x→+∞>(100+15/x^95)(1-6/x^14+1/x^20)/[(1+3/x^95+1/x^100)(20-6/x^19)]
= 100/20 = 5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询