以Rt三角形ABC的一条直角边AC为直径作圆,交斜边AB于D,E是BC的中点。求证:DE是圆O的切

以Rt三角形ABC的一条直角边AC为直径作圆,交斜边AB于D,E是BC的中点。求证:DE是圆O的切线... 以Rt三角形ABC的一条直角边AC为直径作圆,交斜边AB于D,E是BC的中点。求证:DE是圆O的切线 展开
qsmm
2013-11-19 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.9亿
展开全部
解 析 连接OE,OD,根据全等三角形的判定,易得△OEC≌Rt△ODC,进而可得∠ODC=∠OCE=90°,故DE是⊙O的切线。

证明:
连接OE,OD;
∵在△CDB,E为BC边的中点,
∴CE=DE.
∵OD=OC,OE是公共边,
∴△OEC≌Rt△ODC.
∴∠ODC=∠OCE=90°.
∴DE是⊙O的切线.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式