某个七位数1993xxx能被2,3,4,5,6,7,8,9都整除,那么它的最后3个数字组成的3个数是多少

 我来答
牵桂枝由香
2020-02-20 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:957万
展开全部
能被2、3、5同时整除的特征是个位为0,能被9整除的一定能够被3整除,能被8整除的一定能够被4整除,能被9整除的数的特征是各数位上的数字之和能够被9整除,1993各数字之和是22,差5或者13,能被8整除的数字特征是末三位数能被8整除,剩下的就只考虑被7整除了,能够被7整除的特征是末三位数和末三位数以前的数组成的新数字之差能够被7整除,1993-320=1673能够被7整除,故应该是320。
另外,还可以用竖式谜的形式求解本题。先求出2、3、4、5、6、7、8、9的最小公倍数为2520,一定能被这个数整除,列竖式,解竖式谜就行。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式