2个回答
2013-06-16
展开全部
积分域在D₁:x² + y² = 4的内面但在D₂:x² + y² = 2x的外面,采用大减少的方法。
∫∫D₁ √(x² + y²) dxdy
= ∫(0,2π) dθ ∫(0,2) r * r dr
= 2π * (1/3) * 2³
= 16π/3
∫∫D₂ √(x² + y²) dxdy
= ∫(- π/2,π/2) dθ ∫(0,2cosθ) r * r dr
= 2∫(0,π/2) (1/3) * (8cos³θ) dθ
= (16/3) * (3 - 1)!!/3!!
= 16/3 * 2/3
= 32/9
因此∫∫D √(x² + y²) dxdy = 16π/3 - 32/9 = (16/9)(3π - 2)
∫∫D₁ √(x² + y²) dxdy
= ∫(0,2π) dθ ∫(0,2) r * r dr
= 2π * (1/3) * 2³
= 16π/3
∫∫D₂ √(x² + y²) dxdy
= ∫(- π/2,π/2) dθ ∫(0,2cosθ) r * r dr
= 2∫(0,π/2) (1/3) * (8cos³θ) dθ
= (16/3) * (3 - 1)!!/3!!
= 16/3 * 2/3
= 32/9
因此∫∫D √(x² + y²) dxdy = 16π/3 - 32/9 = (16/9)(3π - 2)
追问
2cosθ怎么来的
追答
极坐标变换:x = rcosθ,y = rsinθ
x² + y² = 2x
(rcosθ) + (rsinθ)² = 2(rcosθ)
r²(cos²θ + sin²θ) = 2rcosθ
r² = 2rcosθ
r = 2cosθ ==> 0 ≤ r ≤ 2cosθ
另一个也是这样:
x² + y² = 4
r²cos²θ + r²sin²θ = 4
r² = 4
r = 2 ==> 0 ≤ r ≤ 2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询