设函数f<x>=(ax+1)/(x+2a)在区间<-2,正无穷>上是增函数,那么a的取值范围是
2个回答
展开全部
f<x>=(ax+1)/(x+2a)(x≠-2a)
= [a(x+2a)+1-2a²]/(x+2a)
=a+(1-2a²)/(x+2a)
f(x)在区间(-2,正无穷)上是增函数,
(1) -2a≤-2 ,a≥1
(2) 1-2a²<0 ,a²>1/2,
==>a<-√2/2或a>√2/2
∴a的取值范围是a≥1
= [a(x+2a)+1-2a²]/(x+2a)
=a+(1-2a²)/(x+2a)
f(x)在区间(-2,正无穷)上是增函数,
(1) -2a≤-2 ,a≥1
(2) 1-2a²<0 ,a²>1/2,
==>a<-√2/2或a>√2/2
∴a的取值范围是a≥1
追问
-2a≤-2和 1-2a²<0 什么意思没看懂
追答
x=-2a是间断点
f(x)在区间(-2,正无穷)上是增函数,
间断点不能在区间内部
∴-2a≤-2
f(x)的图像是由反比例函数y=(1-2a²)/x平移而来的
反比例系数只有当1-2a²<0时 ,
y=(1-2a²)/x在(0,+∞),(-∞,0)上分别是减函数
∴要1-2a²<0
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询