在△ABC中∠ABC=90°AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆 20
在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射...
在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F.
向左转|向右转
设半径OD=X,AP=Y (3)问BF的长能等于7分之18吗?若能,判断此时半圆O与BC的位置关系;若不能,说明理由 !!!!!
大家帮帮我啊 对的一定给分 展开
向左转|向右转
设半径OD=X,AP=Y (3)问BF的长能等于7分之18吗?若能,判断此时半圆O与BC的位置关系;若不能,说明理由 !!!!!
大家帮帮我啊 对的一定给分 展开
1个回答
展开全部
1)证明:连接OD,
∵AP切半圆于D,∠ODA=∠PED=90°,
又∵OD=OE,
∴∠ODE=∠OED,
∴∠ADE=∠ODE+∠ODA,
∠AEP=∠OED+∠PED,
∴∠ADE=∠AEP,
又∵∠A=∠A,
∴△ADE∽△AEP;
(2)解:∵△AOD∽△ACB,
∴0A CA =OD CB =AD AB ,
∵AB=4,BC=3,
∴AC=5,
∴OD=3 5 OA,AD=4 5 OA,
∵△ADE∽△AEP,
∴AE AP =AD AE =DE EP ,
∵AP=y,OA=x,AE=OE+OA=OD+OA=8 5 OA,
∴AE AP =AD AE =4 5 OA 8 5 OA =1 2 ,
则y=16 5 x(0<x≤25 8 );
(3)解:情况1:y=16 5 x,BP=4-AP=4-16 5 x,
∵△PBF∽△PED,
∴BF BP =ED EP ,
又∵△ADE∽△AEP,
∴ED EP =AE AP ,
∴BF BP =AE AP ,
∴1 4-16 5 x =8 5 x 16 5 x ,
解得:x=5 8 ,
∴AP=16 5 x=2.
情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:
可以得CF=CE,CE=CF=BC-BF=3-1=2,
过点E作EG⊥BC,
则EG AB =CG BC =CE AC =2 5 ,
解得,EG=8 5 ,CG=6 5 ,
FG=FC-CG=2-6 5 =4 5 ,
PB:EG=FB:FG,
PB=8 5 ÷4 5 =2,
AP=AB+PB=4+2=6.
故线段AP的长为2或6.
∵AP切半圆于D,∠ODA=∠PED=90°,
又∵OD=OE,
∴∠ODE=∠OED,
∴∠ADE=∠ODE+∠ODA,
∠AEP=∠OED+∠PED,
∴∠ADE=∠AEP,
又∵∠A=∠A,
∴△ADE∽△AEP;
(2)解:∵△AOD∽△ACB,
∴0A CA =OD CB =AD AB ,
∵AB=4,BC=3,
∴AC=5,
∴OD=3 5 OA,AD=4 5 OA,
∵△ADE∽△AEP,
∴AE AP =AD AE =DE EP ,
∵AP=y,OA=x,AE=OE+OA=OD+OA=8 5 OA,
∴AE AP =AD AE =4 5 OA 8 5 OA =1 2 ,
则y=16 5 x(0<x≤25 8 );
(3)解:情况1:y=16 5 x,BP=4-AP=4-16 5 x,
∵△PBF∽△PED,
∴BF BP =ED EP ,
又∵△ADE∽△AEP,
∴ED EP =AE AP ,
∴BF BP =AE AP ,
∴1 4-16 5 x =8 5 x 16 5 x ,
解得:x=5 8 ,
∴AP=16 5 x=2.
情况2:如图,半圆O的半径R较大时,EP交AB延长线于点P,P在B上方;交BC于点F,F在BC之间:
可以得CF=CE,CE=CF=BC-BF=3-1=2,
过点E作EG⊥BC,
则EG AB =CG BC =CE AC =2 5 ,
解得,EG=8 5 ,CG=6 5 ,
FG=FC-CG=2-6 5 =4 5 ,
PB:EG=FB:FG,
PB=8 5 ÷4 5 =2,
AP=AB+PB=4+2=6.
故线段AP的长为2或6.
追问
拜托,不要照抄答案 题目不一样
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询