已知a+b+c=11,ab+bc+ac=38,求a的平方+b的平方+c的平方的值
展开全部
你好!
解:
一、(a+b+c)^2 =[(a+b)+c]^2 =(a+b)^2+2*(a+b)*c+c^2 =a^2+2ab+b^2+2ac+2bc+c^ =a^2+b^2+c^2+2ab+2ac+2bc
二、2ab+2ac+2bc=38×2=76
所以:a^2+b^2+c^2=(a+b+c)^2-(2ab+2ac+2bc)=11^2-76=121-76=45
如果本题有什么不明白可以追问,如果满意请点击右上角好评并“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
, 你的采纳是我服务的动力。
祝学习进步!
解:
一、(a+b+c)^2 =[(a+b)+c]^2 =(a+b)^2+2*(a+b)*c+c^2 =a^2+2ab+b^2+2ac+2bc+c^ =a^2+b^2+c^2+2ab+2ac+2bc
二、2ab+2ac+2bc=38×2=76
所以:a^2+b^2+c^2=(a+b+c)^2-(2ab+2ac+2bc)=11^2-76=121-76=45
如果本题有什么不明白可以追问,如果满意请点击右上角好评并“采纳为满意回答”
如果有其他问题请采纳本题后,另外发并点击我的头像向我求助,答题不易,请谅解,谢谢。
, 你的采纳是我服务的动力。
祝学习进步!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询