质数又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数。
从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于 1 的整数之乘积;
2.拥有某大于 1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是 1 也不是素数(质数);
5.有至少一个素因子的非素数。
以下是关于合数以及一些特殊合数的结论:
一个合数有奇数个因数(因子)当且仅当它是完全平方数。
1、只有1和它本身两个约数的数,叫质数。(如:2÷1=2,2÷2=1,所以2的约数只有1和它本身2这两个约数,2就是质数。)
2、除了1和它本身两个约数外,还有其它约数的数,叫合数。(如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)
3、1既不是质数也不是合数。因为它的约数有且只有1这一个约数。
拓展资料:
质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。如果 为素数,则 要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)
合数的一种方法为计算其质因数的个数。一个有两个质因数的合数称为半质数,有三个质因数的合数则称为楔形数。在一些的应用中,亦可以将合数分为有奇数的质因数的合数及有偶数的质因数的合数。对于后者, (其中μ为默比乌斯函数且''x''为质因数个数的一半),而前者则为
注意,对于质数,此函数会传回 -1,且 。而对于有一个或多个重复质因数的数字''n'', 。
另一种分类合数的方法为计算其因数的个数。所有的合数都至少有三个因数。一质数的平方数,其因数有 。一数若有著比它小的整数都还多的因数,则称此数为高合成数。另外,完全平方数的因数个数为奇数个,而其他的合数则皆为偶数个。
合数可分为奇合数和偶合数,也能基本合数(能被2或3整除的),分阴性合数(6N-1)和阳性合数(6N+1),还能分双因子合数和多因子合数。
质数就是除了数字“1”和其本身之外再也没有其他的因数的数字。质数基本上全部都是单数,除了有一个比较特殊的偶数,就是数字“2”,因为数字“2”除了其本身和数字“1”以外,再无其他因数。以下列举100以内的所有质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
合数就是除了数字“1”和其本身之外还有其他因数的数字。即自然数里除去质数外,其他都是合数。
扩展资料:
质数的性质:
1、质数p的约数只有两个:1和p。
2、初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
3、质数的个数是无限的。
6、若n为大于或等于2的正整数,在n到 之间至少有一个质数。
8、所有大于10的质数中,个位数只有1,3,7,9
合数的性质:
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
7、对任一大于5的合数(威尔逊定理)
一、质数:质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
1、以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。孪生质数也有相同的分布规律。
2、以下15个区间内质数和孪生质数的统计数。
S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)
S2区间73——216,有素数27个,孪生素数7对。
S3区间217——432,有素数36个,孪生素数8对。
S4区间433——720,有素数45个,孪生素数7对。
S5区间721——1080,有素数52个,孪生素数8对。
S6区间1081——1512,素数60个,孪生素数9对。
S7区间1513——2016,素数65个,孪生素数11对。
S8区间2017——2592,素数72个,孪生素数12对。
S9区间2593——3240,素数80个,孪生素数10对。
S10区间3241——3960,素数91个,孪生素数18对。
S11区间3961——4752素数92个,孪生素数17对。
S12区间4752——5616素数98个,孪生素数13对。
S13区间5617——6552素数108个,孪生素数14对。
S14区间6553——7560素数113个,孪生素数19对。
S15区间7561——8640素数116个,孪生素数14对。
素数分布规律的发现,许多素数问题可以解决。
二、合数:
1、合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
2、所有大于2的偶数都是合数。
所有大于5的奇数中,个位为5的都是合数。
除0以外,所有个位为0的自然数都是合数。
所有个位为4,6,8的自然数都是合数。
最小的(偶)合数为4,最小的奇合数为9。
每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
对任一大于5的合数(威尔逊定理)
扩展资料:
一、质数的性质:
1、质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,
2、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
3、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
二、合数的性质:
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
7、对任一大于5的合数(威尔逊定理)
推荐于2017-05-16
1
质数的概念
所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。
合数
合数又名合成数,是满足以下任一(等价)条件的正整数:
1.是两个大于 1 的整数之乘积;
2.拥有某大于 1 而小于自身的因数(因子);
3.拥有至少三个因数(因子);
4.不是 1 也不是素数(质数);
5.有至少一个素因子的非素数。
以下是关于合数以及一些特殊合数的结论:
·一个合数有奇数个因数(因子)当且仅当它是完全平方数。
1、只有1和它本身两个约数的数,叫质数。(如:2÷1=2,2÷2=1,所以2的约数只有1和它本身2这两个约数,2就是质数。)
2、除了1和它本身两个约数外,还有其它约数的数,叫合数。(如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)
3、1既不是质数也不是合数。因为它的约数有且只有1这一个约数。