求微分方程的通解或在给定初始条件下的特解,求明细

 我来答
易承吴纵
2020-04-08 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:776万
展开全部
求下列微分方程的通解或在给定初始条件下的特解1。(dy/dx)-y/x-1=0,y(e)=3e;解:令y/x=u,则y=ux;对x取导数得dy/dx=(du/dx)x+u,代入原式得:(du/dx)x+u-u-1=0,即有(du/dx)x=1;分离变量得du=dx/x;积分之得u=lnx+lnC=ln(Cx),故得通解为y=xln(Cx);代入初始条件:3e=eln(Ce)=e(lnC+1),即有lnC=2,C=e²;于是得特解为y=xln(e²x)=x(2+lnx)=2x+xlnx;2npxy'+2y=041y(1)=1;解:dy/dx=-2y/x;分离变量得dy/y=-2dx/x;取积分得lny=-2lnx+lnC=ln(C/x²)故得y=C/x²即通解为x²y=C;代入初始条件得C=1,故得特解为x²y=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
本采白殷海
2020-03-26 · TA获得超过2.9万个赞
知道大有可为答主
回答量:9530
采纳率:34%
帮助的人:854万
展开全部
求下列微分方程的通解或在给定初始条件下的特解
1。(dy/dx)-y/x-1=0,y(e)=3e;
解:令y/x=u,则y=ux;对x取导数得dy/dx=(du/dx)x+u,代入原式得:
(du/dx)x+u-u-1=0,即有(du/dx)x=1;分离变量得du=dx/x;积分之得u=lnx+lnc=ln(cx),
故得通解为y=xln(cx);代入初始条件:3e=eln(ce)=e(lnc+1),即有lnc=2,c=e²;
于是得特解为y=xln(e²x)=x(2+lnx)=2x+xlnx;
2。xy'+2y=0,y(1)=1;
解:dy/dx=-2y/x;分离变量得dy/y=-2dx/x;取积分得lny=-2lnx+lnc=ln(c/x²)
故得y=c/x²,即通解为x²y=c;代入初始条件得c=1,故得特解为x²y=1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式