函数可导的充分必要条件?

 我来答
卷静秀牧良
2020-02-07 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:30%
帮助的人:664万
展开全部
如果一个函数可导,其必然连续。如果一个函数连续,则不一定可导。如Y=lXl
函数在一点可导的充分必要条件是连续的函数,在该点的左右极限存在且相等。
当然,同济课本上这么说过,函数可导的充要条件是左导数和右导数相等,这是一个意思。
至于函数的一致连续性,这个不常用只是个概念问题,我没有听说过他和可导的关系,它的概念我记不清了,不过不论是学习还是考研,重点还是你前一部分说的连续,可导,还有一个是极限。
东清晖姒越
2020-02-08 · TA获得超过3.3万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:835万
展开全部
以下3者成立:
①左右导数存在且相等是可导的充分必要条件。
②可导必定连续。
③连续不一定可导。
所以,
左右导数存在且相等就能保证该点是连续的。
仅有左右导数存在且该点连续不能保证可导:例如y=|x|在x=0点。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式