求函数的极限值,一般有哪些方法?(详细解答)

 我来答
茅山东麓
2013-06-22 · TA获得超过4137个赞
知道小有建树答主
回答量:469
采纳率:0%
帮助的人:277万
展开全部
常用方法有:
1、【直接计算】
能直接计算,而又不出现不定式的情况,就直接代入计算;
2、【罗必达方法】
如果出现七种不定式之一,就不可以直接代入计算,如果是连续函数,
就必须把七种不定式,统统化成无穷大比无穷大的形式,或无穷小比
无穷小的形式,然后运用罗必达方法;
3、【变量代换】
如果不是连续函数,却是七种不定式之一,就必须做变量代换,然后
化成连续函数,通常是零x=1/n,然后就可以使用罗必达方法;
4、【定积分】
将极限化成定积分计算;
5、【有理化】
对于简单的0比0,或无穷大比无穷大的题目,先分子有理化,或分母
有理化,或分子分母同时有理化;
6、【分子有理化】
对于无穷大减无穷大的情况,分子有理化;
7、【因式分解】
能因式分解的尽一切可能因式分解,因式分解的方法通常有很多,最
常见的是a^2-b^2,其次是a^n-b^n,十字相乘法,长除法等等;
8、【特别极限】
运用两个特别极限:sinx/x,(1+无穷小)^无穷大(该无穷小的倒数)=e;
9、【夹挤法】
夹挤法,结合放大、缩小法;
10、【等价无穷小代换法】
这种方法,在国内很有市场,数学教师们异常热衷,炒作得很火热。
国际上并非如此,一是因为能等价代换的类型非常有限;二是等价代换
的实质其实不外乎两种特别极限,或罗必达法则;三是等价代换会经常
出错;四是数学是一门生龙活虎的学科,国内教学喜欢用死记硬背的方
法去让学生去死背这、硬背那,还一大套歪理,国际教学不吃这一套。
晨光熹微555
2013-06-17 · TA获得超过7696个赞
知道大有可为答主
回答量:1224
采纳率:94%
帮助的人:321万
展开全部
函数极限的概念
  函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,,而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x。时的极限。   问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等。1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况。详见附例1。   函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)
编辑本段极限存在准则
  有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。   两边夹定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立   (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A   不但能证明极限存在,还可以求极限,主要用放缩法。   单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。   在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。
编辑本段函数极限的方法
  ①   利用函数连续性:lim f(x) = f(a) x->a   (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)   ②恒等变形   当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:   第一:因式分解,通过约分使分母不会为零。   第二:若分母出现根号,可以配一个因子是根号去除。   第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)   当然还会有其他的变形方式,需要通过练习来熟练。   ③通过已知极限   特别是两个重要极限需要牢记。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式