高一的数学题不会做
设向量a=(cosα,cosβ),b=(cosθ,cosφ),c=a+tb,(t属于R)其中αβθφ均为锐角且α+β=θ+φ=2(α+φ)=二分之派(1)求向量a和b的积...
设向量a=(cosα,cosβ),b=(cosθ,cosφ),c=a+tb,(t属于R)其中αβθφ均为锐角且α+β=θ+φ=2(α+φ)=二分之派
(1)求向量a和b的积
(2)当t取何值时,向量c的摩长最小,最小值是多少? 展开
(1)求向量a和b的积
(2)当t取何值时,向量c的摩长最小,最小值是多少? 展开
6个回答
展开全部
(1)α+β=θ+φ=二分之派,a=(sinβ,cosβ),b=(cosθ,sinθ).
α+β=2(α+φ),β=α+2φ,同理θ=2α+φ。则β+θ=3(α+φ)=135度
则ab内积为sin(β+θ)=sin135=2分之根号2.
(2)将c的模平方,是t平方+2tsin(β+θ)+1,即t平方+根号2t+1.当t=负2分之根号2时最小,最小值为2分之根号2。
α+β=2(α+φ),β=α+2φ,同理θ=2α+φ。则β+θ=3(α+φ)=135度
则ab内积为sin(β+θ)=sin135=2分之根号2.
(2)将c的模平方,是t平方+2tsin(β+θ)+1,即t平方+根号2t+1.当t=负2分之根号2时最小,最小值为2分之根号2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)a*b=cosαcosθ+cosβcosφ
因为α+β=θ+φ=2(α+φ)=二分之派
cosθ=sinφ,cosβ=sina
所以a*b=sin(a+φ)=sin(pi/4)=根号2/2
(2)应用cosθ=sinφ,cosβ=sina
|c|^2=t^2+t*根号2+1`
所以当t=-2 分之根号2时,c最小=2分之根号2
这道题挺简单的,同学,你不是不会做,而是偷懒不愿做
因为α+β=θ+φ=2(α+φ)=二分之派
cosθ=sinφ,cosβ=sina
所以a*b=sin(a+φ)=sin(pi/4)=根号2/2
(2)应用cosθ=sinφ,cosβ=sina
|c|^2=t^2+t*根号2+1`
所以当t=-2 分之根号2时,c最小=2分之根号2
这道题挺简单的,同学,你不是不会做,而是偷懒不愿做
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
α+β=θ+φ=π/2
所以有
cosβ=sin(π/2-β)=sinα,cosθ=sin(π/2-θ)=sinφ
a*b
=cosα*cosθ+cosβ*cosφ
=cosα*sinφ+sinα*cosφ
=sin(α+φ)
=sin[(π/2)/2]
=sin(π/4)
=(根号2)/2
c=(cosα+tcosθ,cosβ+tcosφ)=(cosα+tsinφ,sinα+tcosφ)
|c|²
=cos²α+2t*cosα*sinφ+t²sin²φ+sin²α+2t*sinα*cosφ+cos²φ
=1+t²+2t(cosα*sinφ+sinα*cosφ)
=t²+2tsin(α+φ)+1
=t²+(根号2)t+1
当t=-(根号2)/2时,|c|²有最小值,即|c|取最小值
|c|(min)=1/2
所以有
cosβ=sin(π/2-β)=sinα,cosθ=sin(π/2-θ)=sinφ
a*b
=cosα*cosθ+cosβ*cosφ
=cosα*sinφ+sinα*cosφ
=sin(α+φ)
=sin[(π/2)/2]
=sin(π/4)
=(根号2)/2
c=(cosα+tcosθ,cosβ+tcosφ)=(cosα+tsinφ,sinα+tcosφ)
|c|²
=cos²α+2t*cosα*sinφ+t²sin²φ+sin²α+2t*sinα*cosφ+cos²φ
=1+t²+2t(cosα*sinφ+sinα*cosφ)
=t²+2tsin(α+φ)+1
=t²+(根号2)t+1
当t=-(根号2)/2时,|c|²有最小值,即|c|取最小值
|c|(min)=1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)因为α+β=θ+φ=2(α+φ)=π/2
所以α+φ=α+π/4-φ=α-θ+π/4=π/2,即α-θ=π/4
cosβ=cos(π/2-α)=sinα,cosφ=cos(π/2-θ)=sinθ
又有ab=cosαcosθ+cosβcosφ
=cosαcosθ+cos(π/2-α)cos(π/2-θ)
=cosαcosθ+sinαsinθ
=cos(α-θ)
=√2/2。
(2)c=a+tb=(cosα+tcosθ,cosβ+tcosφ)=(cosα+tsinφ,sinα+tcosφ)
两边平方有:
c^2=(cosα)^2+2tcosαsinφ+t^2(sinφ)^2+(sinα)^2+2tsinαcosφ+(cosφ)^2
=1+t^2+2t(cosαsinφ+sinαcosφ)
=t^2+2tsin(α+φ)+1
=t^2+√2t+1
当t=-√2/2时,|c|有最小值,即|c|取最小值:1/2
所以α+φ=α+π/4-φ=α-θ+π/4=π/2,即α-θ=π/4
cosβ=cos(π/2-α)=sinα,cosφ=cos(π/2-θ)=sinθ
又有ab=cosαcosθ+cosβcosφ
=cosαcosθ+cos(π/2-α)cos(π/2-θ)
=cosαcosθ+sinαsinθ
=cos(α-θ)
=√2/2。
(2)c=a+tb=(cosα+tcosθ,cosβ+tcosφ)=(cosα+tsinφ,sinα+tcosφ)
两边平方有:
c^2=(cosα)^2+2tcosαsinφ+t^2(sinφ)^2+(sinα)^2+2tsinαcosφ+(cosφ)^2
=1+t^2+2t(cosαsinφ+sinαcosφ)
=t^2+2tsin(α+φ)+1
=t^2+√2t+1
当t=-√2/2时,|c|有最小值,即|c|取最小值:1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
α=二分之派-β;cosβ=sinα.同理cosθ=sinφ
1, cosαcosθ+cosφcosβ=cosαsinφ+cosφsinα=sin(α+φ)=根号2/2
2,c=(cosα+tsinφ,sinα+tcosφ);
c^2=cosα^2+sinα^2+(tsinφ)^2+(tcosφ)^2+2tcosαsinφ+2tsinαcosφ=1+t^2+t根号2=(t+根号2/2)^2+1/2
当t=-根号2/2时最小,最小值是根号2/2
1, cosαcosθ+cosφcosβ=cosαsinφ+cosφsinα=sin(α+φ)=根号2/2
2,c=(cosα+tsinφ,sinα+tcosφ);
c^2=cosα^2+sinα^2+(tsinφ)^2+(tcosφ)^2+2tcosαsinφ+2tsinαcosφ=1+t^2+t根号2=(t+根号2/2)^2+1/2
当t=-根号2/2时最小,最小值是根号2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询