数学大神帮帮忙
2个回答
展开全部
f(x)=2sin(x-π/6)-2cosx
=√3sinx-cosx-2cosx
=√3sinx-3cosx
=2√3sin(x-π/3)
后面的正在做!
=√3sinx-cosx-2cosx
=√3sinx-3cosx
=2√3sin(x-π/3)
后面的正在做!
追问
继续
追答
f(x)=2sin(x-π/6)-2cosx
=√3sinx-cosx-2cosx
=√3sinx-3cosx
=2√3sin(x-π/3)
单调递增区间满足
2kπ-π/2<=x-π/3<=2kπ+π/2,k∈Z
则2kπ-π/6<=x<=2kπ+5π/6,k∈Z
所以递增区间为[2kπ-π/6,2kπ+5π/6,k∈Z]
x∈[π/2,π]时
x-π/3∈[π/6,2π/3]
所以在x-π/3=π/6即x=π/2时有最小值为y=2√3sinπ/6=√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询