设A=48×(1/3²-4+1/4²-4+…1/100²-4),那么与A最接近的正整数是多少
展开全部
A=48[1/陵散(1*5)+1/(2*6)+1/(3*7)+1/(4*8)+1/(5*9)+...+1/(94*98)+1/(95*99)+1/(96*100)+1/(97*101)+1/(98*102)]
因为1/让汪念(1*5)=1/4(1/1-1/5)
1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+1/4-1/8+1/5-1/9+...+1/94-1/98+1/95-1/99+1/96-1/100+1/97-1/101+1/98-1/102)
=12(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=25-12(1/99+1/100+1/101+1/102)
约=24.52
所以A最接近坦困正整数25
因为1/让汪念(1*5)=1/4(1/1-1/5)
1/(2*6)=1/4(1/2-1/6)
所以上式可转化为
A=48*1/4*(1-1/5+1/2-1/6+1/3-1/7+1/4-1/8+1/5-1/9+...+1/94-1/98+1/95-1/99+1/96-1/100+1/97-1/101+1/98-1/102)
=12(1+1/2+1/3+1/4-1/99-1/100-1/101-1/102)
=25-12(1/99+1/100+1/101+1/102)
约=24.52
所以A最接近坦困正整数25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询