第17题,求学霸解答!
展开全部
解:(I)f'(x)=-3x^2+6x+9 .令f'(x)<0,解得x<-1或x>3
所以函数 的单调递减区间为 (-∞,-1),(3,+∞)
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上 ,所以f(x)在[-1, 2]上单调递增,
又由于 在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是 在区间[-2,2]上的最大值和最小值,
于是有 22+a=20,解得 a=-2.
故f(x)=-x^3+3x^2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
所以函数 的单调递减区间为 (-∞,-1),(3,+∞)
(II)因为f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因为在(-1,3)上 ,所以f(x)在[-1, 2]上单调递增,
又由于 在[-2,-1]上单调递减,
因此f(2)和f(-1)分别是 在区间[-2,2]上的最大值和最小值,
于是有 22+a=20,解得 a=-2.
故f(x)=-x^3+3x^2+9x-2,因此f(-1)=1+3-9-2=-7,
即函数f(x)在区间[-2,2]上的最小值为-7.
追问
谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询