已知二次函数f(x)=ax²+bx+4,集合A={x|f(x)=x}
展开全部
解:(1)因为A是单元素集合,所以方程f(x)
=
x有且只有一个实数解1。代入可得a
+
b
+
4
=
1,a
+
b
=
-3①,f(x)
=
ax
2
+
bx
+
4
=
x
=>
ax
2
+
(b
–
1)x
+
4
=
0
=>Δ=
(b
–
1)
2
–
16a
=
0②,联立解得b
2
–
2b
+
1
–
16(-3
–
b)
=
0
=>
b
2
+
14b
+
49
=
0
=>
(b
+
7)
2
=
0
=>
b
=
-7
=>
a
=
4
=>
f(x)的解析式为f(x)
=
4x
2
–
7x
+
4;
(2)因为1∈A,所以x
=
1是方程f(x)
=
x的解。代入可得a
+
b
=
-3①,即b
=
-3
–
a,所以f(x)
=
ax
2
+
(-3
–
a)x
+
4
=
a[x
–
(3
+
a)/2a]
2
+
4
–
(a
+
3)
2
/4a,二次函数的对称轴l:x
=
(3
+
a)/2a
=
(1/2)(1
+
3/a),因为a∈[1,2]
=>
1/a
∈[1/2,1]
=>
3/a
∈[3/2,3]
=>
1
+
3/a
∈[5/2,4]
=>
x
=
(1/2)(1
+
3/a)∈[5/4,2],分类讨论:
1)当x∈[5/4,2]时,f(x)min
=
f[(3
+
a)/2a]
=
4
–
(a
+
3)
2
/4a
=
5/2
–
(1/4)(a
+
9/a)
=
5/2
–
a/4
–
9/4a∈[0,7/8];
(当1≤a≤4/3)f(x)max
=
f(5/4)
=
5a/16
+
1/4∈[9/16,2/3],
或者(当4/3≤a≤2)f(2)
=
2a
–
2∈[2/3,2];
2)当x∈[1/2,5/4]时,f(x)在x∈[1/2,5/4)上单调递减,所以f(x)max
=
f(1/2)
=
-a/4
+
5/2∈[2,9/4];f(x)min
=
f(5/4)
=
5a/16
+
1/4∈[9/16,7/8];
综上所述,M
=
f(x)max
=
f(1/2)
=
-a/4
+
5/2,m
=
f(x)min
=
f[(3
+
a)/2a]
=
5/2
–
a/4
–
9/4a,所以g(a)
=
M
–
m
=
9/4a,当a
=
2时,g(a)min
=
9/8
。
=
x有且只有一个实数解1。代入可得a
+
b
+
4
=
1,a
+
b
=
-3①,f(x)
=
ax
2
+
bx
+
4
=
x
=>
ax
2
+
(b
–
1)x
+
4
=
0
=>Δ=
(b
–
1)
2
–
16a
=
0②,联立解得b
2
–
2b
+
1
–
16(-3
–
b)
=
0
=>
b
2
+
14b
+
49
=
0
=>
(b
+
7)
2
=
0
=>
b
=
-7
=>
a
=
4
=>
f(x)的解析式为f(x)
=
4x
2
–
7x
+
4;
(2)因为1∈A,所以x
=
1是方程f(x)
=
x的解。代入可得a
+
b
=
-3①,即b
=
-3
–
a,所以f(x)
=
ax
2
+
(-3
–
a)x
+
4
=
a[x
–
(3
+
a)/2a]
2
+
4
–
(a
+
3)
2
/4a,二次函数的对称轴l:x
=
(3
+
a)/2a
=
(1/2)(1
+
3/a),因为a∈[1,2]
=>
1/a
∈[1/2,1]
=>
3/a
∈[3/2,3]
=>
1
+
3/a
∈[5/2,4]
=>
x
=
(1/2)(1
+
3/a)∈[5/4,2],分类讨论:
1)当x∈[5/4,2]时,f(x)min
=
f[(3
+
a)/2a]
=
4
–
(a
+
3)
2
/4a
=
5/2
–
(1/4)(a
+
9/a)
=
5/2
–
a/4
–
9/4a∈[0,7/8];
(当1≤a≤4/3)f(x)max
=
f(5/4)
=
5a/16
+
1/4∈[9/16,2/3],
或者(当4/3≤a≤2)f(2)
=
2a
–
2∈[2/3,2];
2)当x∈[1/2,5/4]时,f(x)在x∈[1/2,5/4)上单调递减,所以f(x)max
=
f(1/2)
=
-a/4
+
5/2∈[2,9/4];f(x)min
=
f(5/4)
=
5a/16
+
1/4∈[9/16,7/8];
综上所述,M
=
f(x)max
=
f(1/2)
=
-a/4
+
5/2,m
=
f(x)min
=
f[(3
+
a)/2a]
=
5/2
–
a/4
–
9/4a,所以g(a)
=
M
–
m
=
9/4a,当a
=
2时,g(a)min
=
9/8
。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
f(x)=ax²+x-1+3a(a属于R)在区间
[-1,1]上有零点
即ax²+x-1+3a=0在[-1,1]上有实数解
即a(x²+3)=1-x
即
a=(1-x)/(x²+3)有实数解
令
g(x)=(1-x)/(x²+3)则
a的范围即是g(x)的值域
g(x)=[-x²-3-2x(1-x)]/(x²+3)²
=(x²-2x-3)/(x²+3)²
=(x+1)(x-3)/(x²+3)²
∵-1≤x≤1∴
(x+1)(x-3)
≤0
∴
g(x)≤0
∴g(x)是减函数
∴x=-1
g(x)max=1
[-1,1]上有零点
即ax²+x-1+3a=0在[-1,1]上有实数解
即a(x²+3)=1-x
即
a=(1-x)/(x²+3)有实数解
令
g(x)=(1-x)/(x²+3)则
a的范围即是g(x)的值域
g(x)=[-x²-3-2x(1-x)]/(x²+3)²
=(x²-2x-3)/(x²+3)²
=(x+1)(x-3)/(x²+3)²
∵-1≤x≤1∴
(x+1)(x-3)
≤0
∴
g(x)≤0
∴g(x)是减函数
∴x=-1
g(x)max=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询