球的表面积和体积是怎么得出来的?公式是什么?
4个回答
东莞大凡
2024-11-14 广告
2024-11-14 广告
标定板认准大凡光学科技,专业生产研发厂家,专业从事光学影像测量仪,光学投影测量仪.光学三维测量仪,光学二维测量仪,光学二维测量仪,光学三维测量仪,光学二维测量仪.的研发生产销售。东莞市大凡光学科技有限公司创立于 2018 年,公司总部坐落于...
点击进入详情页
本回答由东莞大凡提供
展开全部
你好!推理是用微积分的方法,表面积是4πr2
体积就是4/3πr3.
体积就是4/3πr3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
体积公式:
用微积分中的二重积分可以计算球的体积,但是,你如果不会微积分也没关系,还有另外的方法。
用此方法的原理是祖堩原理,具体内容是:夹在两个平行平面的几何体,用
与这两个平面平行的平面去截它们,如果截得的截面的面积总是相等,
那么夹在这两个平面间的几何体的体积相等。
为了应用组堩原理,需要找到符合条件的图形;(设球半径为R,Pi表示圆周率,"x^y"表示x的y次方)
1、先将球分成两个半球,球出一个半球的体积就可求出球的体积;
2、在半球顶上作一个与半球地面平行的平面;
3、在这两个平面之间,构造一个圆柱体,使得它的高底面半径均等于球半径;
4、然后,在构造的圆柱体中去掉以该圆柱体的上底面为底面,以该圆柱体的高为高的圆锥体的那部分体积,则所剩的部分体积为2(Pi*R^3)/3,
5、用距离底面为h的平面去截这两个几何体,截得的半球的截面面积S1=Pi(R^2-h^2);截得的被去掉一个同底等高圆柱体的面积为S2=Pi(R^2-h^2),于是,在这两个平面之间,用平行于这两个平面的第三个平面截得的这两个几何体的截面积总有S1=S2;
根据祖堩原理,这两个几何体的体积相等,于是就有半球的体积V/2=2(Pi*R^3)/3;
因此,球体的体积公式为:V=4(Pi*R^3)/3
面积公式:S=4πR^2如果不知半径可以用两块板子和一个尺量
用微积分中的二重积分可以计算球的体积,但是,你如果不会微积分也没关系,还有另外的方法。
用此方法的原理是祖堩原理,具体内容是:夹在两个平行平面的几何体,用
与这两个平面平行的平面去截它们,如果截得的截面的面积总是相等,
那么夹在这两个平面间的几何体的体积相等。
为了应用组堩原理,需要找到符合条件的图形;(设球半径为R,Pi表示圆周率,"x^y"表示x的y次方)
1、先将球分成两个半球,球出一个半球的体积就可求出球的体积;
2、在半球顶上作一个与半球地面平行的平面;
3、在这两个平面之间,构造一个圆柱体,使得它的高底面半径均等于球半径;
4、然后,在构造的圆柱体中去掉以该圆柱体的上底面为底面,以该圆柱体的高为高的圆锥体的那部分体积,则所剩的部分体积为2(Pi*R^3)/3,
5、用距离底面为h的平面去截这两个几何体,截得的半球的截面面积S1=Pi(R^2-h^2);截得的被去掉一个同底等高圆柱体的面积为S2=Pi(R^2-h^2),于是,在这两个平面之间,用平行于这两个平面的第三个平面截得的这两个几何体的截面积总有S1=S2;
根据祖堩原理,这两个几何体的体积相等,于是就有半球的体积V/2=2(Pi*R^3)/3;
因此,球体的体积公式为:V=4(Pi*R^3)/3
面积公式:S=4πR^2如果不知半径可以用两块板子和一个尺量
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
表面积4πr方
体积3分之4πr立方
具体是怎么来的
我也不是很清楚!不好意思了!
体积3分之4πr立方
具体是怎么来的
我也不是很清楚!不好意思了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询