用展开泰勒公式证明不等式

设f(x)在[0,1]上具有二阶导数,且满足f(x)的绝对值≤a,f''(x)的绝对值≤b,其中a>=0,b>=0.证明对于任意x∈(0,1),有f'(x)的绝对值≤2a... 设f(x)在[0,1]上具有二阶导数,且满足f(x)的绝对值≤a,f''(x)的绝对值≤b,其中a>=0,b>=0.证明对于任意x∈(0,1),有f'(x)的绝对值≤2a+b/2 展开
眼泪不再听话了
2013-06-18 · TA获得超过2827个赞
知道小有建树答主
回答量:232
采纳率:100%
帮助的人:87.9万
展开全部
f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2 ,x0介于1和x之间
f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2 ,x1介于0和x之间
所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1) x^2
所以|f'(x)|≤|f(1)|+|f(0)|+1/2*|f''(x1)|x^2+1/2*|f''(x0)|(1-x)^2≤2a+b/2[x^2+(1-x)^2]≤2a+b/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式