已知函数f(x)=x3-3ax-1,a≠0 (1)求f(x)的单调区间; (2)若f(x)在x=-1处取得极 10
(2)f(x)在x=-1处取得极值,所以-√a=-1,a=1,所以f(x)=x³-3x-1,且f(1)为极小值,f(-1)为极大值,所以f(1)<m<f(-1)...
(2)
f(x)在x=-1处取得极值,所以-√a=-1,a=1,所以f(x)=x³-3x-1,
且f(1)为极小值,f(-1)为极大值,所以f(1)<m<f(-1)
即-3<m<1.
第二问没看懂。。求大师解析 展开
f(x)在x=-1处取得极值,所以-√a=-1,a=1,所以f(x)=x³-3x-1,
且f(1)为极小值,f(-1)为极大值,所以f(1)<m<f(-1)
即-3<m<1.
第二问没看懂。。求大师解析 展开
2个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询