(高中奥数)集合A={1,2,3,4.2n,2n+1}子集B满足:任意的x.y∈...
(高中奥数)集合A={1,2,3,4.2n,2n+1}子集B满足:任意的x.y∈B,x+y不∈B,集合B中元素个数的最大值为...
(高中奥数)集合A={1,2,3,4.2n,2n+1}子集B满足:任意的x.y∈B,x+y不∈B,集合B中元素个数的最大值为
展开
1个回答
展开全部
集合B中元素个数的最大值为n+1.
取B={1,3,5,…,2n+1},则此集合中任意两个数之和为偶数,符合题意.
下面证明取A中任何n+2个元素组成的集合B,一定有两个数之和仍然在B中.
用数学归纳法证明.
当n=1时,A={1,2,3},取A中3个元素的集合B={1,2,3},显然有1+2=3,结论成立.
假设n时结论成立,即A={1,2,3,…,2n,2n+1}中任意n+2个元素的集合B必有两个数之和仍在B中.
对于n+1时,A={1,2,3,…,2n+1,2n+2,2n+3},从A中任取n+3个元素组成集合B.下面证明B中必有两个数之和仍在B中.
若所取的n+3个数不含有2n+2或2n+3,那么必在{1,2,3,…,2n,2n+1}中取出n+2个数.由归纳假设,必有两个数之和在B中,结论成立.
对所取的n+3个数含有2n+2和2n+3,则要在{1,2,3,…,2n,2n+1}取出n+1数.下面证明2n+3必可以表示成B中的两个数之和.
将1,2,3,…,2n+1,2n+2这2n+2个数分成n+1组(1,2n+2)、(2,2n+1)、(3,2n)、…、(n+1,n+2),从中取出n+2个数中必有两个数在同一组.由于2n+3=1+(2n+2)=2+(2n+1)=3+2n=…=(n+1)+(n+2),故在1,2,3,…,2n,2n+1,2n+2所取的n+2必有两个数之和等于2n+3.
由数学归纳法原理可知集合A中任取n+2个数的集合B,在B中必有两数之和仍在B中.
因此,B中元素个数最大值为n+1.
取B={1,3,5,…,2n+1},则此集合中任意两个数之和为偶数,符合题意.
下面证明取A中任何n+2个元素组成的集合B,一定有两个数之和仍然在B中.
用数学归纳法证明.
当n=1时,A={1,2,3},取A中3个元素的集合B={1,2,3},显然有1+2=3,结论成立.
假设n时结论成立,即A={1,2,3,…,2n,2n+1}中任意n+2个元素的集合B必有两个数之和仍在B中.
对于n+1时,A={1,2,3,…,2n+1,2n+2,2n+3},从A中任取n+3个元素组成集合B.下面证明B中必有两个数之和仍在B中.
若所取的n+3个数不含有2n+2或2n+3,那么必在{1,2,3,…,2n,2n+1}中取出n+2个数.由归纳假设,必有两个数之和在B中,结论成立.
对所取的n+3个数含有2n+2和2n+3,则要在{1,2,3,…,2n,2n+1}取出n+1数.下面证明2n+3必可以表示成B中的两个数之和.
将1,2,3,…,2n+1,2n+2这2n+2个数分成n+1组(1,2n+2)、(2,2n+1)、(3,2n)、…、(n+1,n+2),从中取出n+2个数中必有两个数在同一组.由于2n+3=1+(2n+2)=2+(2n+1)=3+2n=…=(n+1)+(n+2),故在1,2,3,…,2n,2n+1,2n+2所取的n+2必有两个数之和等于2n+3.
由数学归纳法原理可知集合A中任取n+2个数的集合B,在B中必有两数之和仍在B中.
因此,B中元素个数最大值为n+1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询