数学二次函数的几种解析式 什么一般式,顶点式之类的.些清楚点
展开全部
二次函数可以表示为f(x)=ax^2+bx+c(a不为0).其图像是一条主轴平行于y轴的抛物线.
一般地,自变量x和因变量y之间存在如下关系:
一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函
数.顶点坐标(-b/2a,(4ac-b^2)/4a)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,
但初中课本上都是第一个式子)
3:交点式(与x轴):y=a(x-x1)(x-x2)
一般地,自变量x和因变量y之间存在如下关系:
一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数),则称y为x的二次函
数.顶点坐标(-b/2a,(4ac-b^2)/4a)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,
但初中课本上都是第一个式子)
3:交点式(与x轴):y=a(x-x1)(x-x2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询