求一道高一的数学题 急急急急急急急急急!!!!!
已知△ABC中,A,B,C,的对边分别为a,b,c,且a²+b²-2abcos(C+θ)=B²+c²-2bccos(A+θ),其中...
已知△ABC中,A,B,C,的对边分别为a,b,c,且a²+b²-2abcos(C+θ)=B
²+c²-2bccos(A+θ),其中θ∈{π/2,2π/3},求证:△ABC为等腰三角形 展开
²+c²-2bccos(A+θ),其中θ∈{π/2,2π/3},求证:△ABC为等腰三角形 展开
2个回答
2013-06-19
展开全部
证明:
将已知等式化简为:
a^-c^=2b[a*cos(C+D)-c*cos(A+D)] ①
在△ABC中,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R
故:a=2R*sinA,b=2R*sinB,c=2R*sinC
代入已知等式中,可化简得:
sin^A-sin^C=2sinB*[sinA*cos(C+D)-sinC*cos(A+D)]
=2sinB*[sinA*(cosC*cosD-sinC*sinD)-sinC*(cosA*cosD-sinA*sinD)]
=2sinB*cosD*(sinA*cosC-cosA*sinC)
=2sinB*cosD*sin(A-C)
∵A+B+C=180°,∴sin(A+C)=sin(180°-B)=sinB
∴sin^A-sin^C
=2sin(A+C)*sin(A-C)*cosD
={cos[(A+C)-(A-C)]-cos[(A+C)+(A-C)]}*cosD
=(cos2C-cos2A)*cosD
=[1-2sin^C-(1-2sin^A)]*cosD
=2(sin^A-sin^C)*cosD
∴(sin^A-sin^C)*(2cosD-1)=0
∵D∈[90°,120°]
∴cosD∈[-1/2,0]
∴2cosD-1≠0
∴sin^A-sin^C=0
<=>(sinA+sinC)*(sinA-sinC)=0
∵A,B,C∈(0,180°)
∴0<A+C<180°
且sinA,sinC>0
∴sinA+sinC>0
<=>sinA=sinC
<=>A=C (A+C=180°显然不成立,舍去)
因此,△ABC为等腰三角形
将已知等式化简为:
a^-c^=2b[a*cos(C+D)-c*cos(A+D)] ①
在△ABC中,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R
故:a=2R*sinA,b=2R*sinB,c=2R*sinC
代入已知等式中,可化简得:
sin^A-sin^C=2sinB*[sinA*cos(C+D)-sinC*cos(A+D)]
=2sinB*[sinA*(cosC*cosD-sinC*sinD)-sinC*(cosA*cosD-sinA*sinD)]
=2sinB*cosD*(sinA*cosC-cosA*sinC)
=2sinB*cosD*sin(A-C)
∵A+B+C=180°,∴sin(A+C)=sin(180°-B)=sinB
∴sin^A-sin^C
=2sin(A+C)*sin(A-C)*cosD
={cos[(A+C)-(A-C)]-cos[(A+C)+(A-C)]}*cosD
=(cos2C-cos2A)*cosD
=[1-2sin^C-(1-2sin^A)]*cosD
=2(sin^A-sin^C)*cosD
∴(sin^A-sin^C)*(2cosD-1)=0
∵D∈[90°,120°]
∴cosD∈[-1/2,0]
∴2cosD-1≠0
∴sin^A-sin^C=0
<=>(sinA+sinC)*(sinA-sinC)=0
∵A,B,C∈(0,180°)
∴0<A+C<180°
且sinA,sinC>0
∴sinA+sinC>0
<=>sinA=sinC
<=>A=C (A+C=180°显然不成立,舍去)
因此,△ABC为等腰三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询