高中数学 求数列通项公式题目
在数列{An}中,A1=A2=1,A(n+1)+An=A(n+2),(n>2),求此数列的通项公式...
在数列{An}中,A1=A2=1,A(n+1)+An=A(n+2),(n>2),求此数列的通项公式
展开
1个回答
展开全部
F(n+2)
=
F(n+1)
+
F(n)
=>
F(n+2)
-
F(n+1)
-
F(n)
=
0
令
F(n+2)
-
aF(n+1)
=
b(F(n+1)
-
aF(n))
展开
F(n+2)
-
(a+b)F(n+1)
+
abF(n)
=
0
显然
a+b=1
ab=-1
由韦达定理知
a、b为二次方程
x^2
-
x
-
1
=
0
的两个根
解得
a
=
(1
+
√5)/2,b
=
(1
-√5)/2
或
a
=
(1
-√5)/2,b
=
(1
+
√5)/2
令G(n)
=
F(n+1)
-
aF(n),则G(n+1)
=
bG(n),且G(1)
=
F(2)
-
aF(1)
=
1
-
a
=
b,因此G(n)为等比数列,G(n)
=
b^n
,即
F(n+1)
-
aF(n)
=
G(n)
=
b^n
--------(1)
在(1)式中分别将上述
a
b的两组解代入,由于对称性不妨设x
=
(1
+
√5)/2,y
=
(1
-√5)/2,得到:
F(n+1)
-
xF(n)
=
y^n
F(n+1)
-
yF(n)
=
x^n
以上两式相减得:
(x-y)F(n)
=
x^n
-
y^n
F(n)
=
(x^n
-
y^n)/(x-y)
=
{...F(n+2)
=
F(n+1)
+
F(n)
=>
F(n+2)
-
F(n+1)
-
F(n)
=
0
令
F(n+2)
-
aF(n+1)
=
b(F(n+1)
-
aF(n))
展开
F(n+2)
-
(a+b)F(n+1)
+
abF(n)
=
0
显然
a+b=1
ab=-1
由韦达定理知
a、b为二次方程
x^2
-
x
-
1
=
0
的两个根
解得
a
=
(1
+
√5)/2,b
=
(1
-√5)/2
或
a
=
(1
-√5)/2,b
=
(1
+
√5)/2
令G(n)
=
F(n+1)
-
aF(n),则G(n+1)
=
bG(n),且G(1)
=
F(2)
-
aF(1)
=
1
-
a
=
b,因此G(n)为等比数列,G(n)
=
b^n
,即
F(n+1)
-
aF(n)
=
G(n)
=
b^n
--------(1)
在(1)式中分别将上述
a
b的两组解代入,由于对称性不妨设x
=
(1
+
√5)/2,y
=
(1
-√5)/2,得到:
F(n+1)
-
xF(n)
=
y^n
F(n+1)
-
yF(n)
=
x^n
以上两式相减得:
(x-y)F(n)
=
x^n
-
y^n
F(n)
=
(x^n
-
y^n)/(x-y)
=
{[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
=
F(n+1)
+
F(n)
=>
F(n+2)
-
F(n+1)
-
F(n)
=
0
令
F(n+2)
-
aF(n+1)
=
b(F(n+1)
-
aF(n))
展开
F(n+2)
-
(a+b)F(n+1)
+
abF(n)
=
0
显然
a+b=1
ab=-1
由韦达定理知
a、b为二次方程
x^2
-
x
-
1
=
0
的两个根
解得
a
=
(1
+
√5)/2,b
=
(1
-√5)/2
或
a
=
(1
-√5)/2,b
=
(1
+
√5)/2
令G(n)
=
F(n+1)
-
aF(n),则G(n+1)
=
bG(n),且G(1)
=
F(2)
-
aF(1)
=
1
-
a
=
b,因此G(n)为等比数列,G(n)
=
b^n
,即
F(n+1)
-
aF(n)
=
G(n)
=
b^n
--------(1)
在(1)式中分别将上述
a
b的两组解代入,由于对称性不妨设x
=
(1
+
√5)/2,y
=
(1
-√5)/2,得到:
F(n+1)
-
xF(n)
=
y^n
F(n+1)
-
yF(n)
=
x^n
以上两式相减得:
(x-y)F(n)
=
x^n
-
y^n
F(n)
=
(x^n
-
y^n)/(x-y)
=
{...F(n+2)
=
F(n+1)
+
F(n)
=>
F(n+2)
-
F(n+1)
-
F(n)
=
0
令
F(n+2)
-
aF(n+1)
=
b(F(n+1)
-
aF(n))
展开
F(n+2)
-
(a+b)F(n+1)
+
abF(n)
=
0
显然
a+b=1
ab=-1
由韦达定理知
a、b为二次方程
x^2
-
x
-
1
=
0
的两个根
解得
a
=
(1
+
√5)/2,b
=
(1
-√5)/2
或
a
=
(1
-√5)/2,b
=
(1
+
√5)/2
令G(n)
=
F(n+1)
-
aF(n),则G(n+1)
=
bG(n),且G(1)
=
F(2)
-
aF(1)
=
1
-
a
=
b,因此G(n)为等比数列,G(n)
=
b^n
,即
F(n+1)
-
aF(n)
=
G(n)
=
b^n
--------(1)
在(1)式中分别将上述
a
b的两组解代入,由于对称性不妨设x
=
(1
+
√5)/2,y
=
(1
-√5)/2,得到:
F(n+1)
-
xF(n)
=
y^n
F(n+1)
-
yF(n)
=
x^n
以上两式相减得:
(x-y)F(n)
=
x^n
-
y^n
F(n)
=
(x^n
-
y^n)/(x-y)
=
{[(1+√5)/2]^n-[(1-√5)/2]^n}/√5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询